
Live streaming latency of streaming protocols
Max Crone

max.crone@aalto.fi

Jack Henschel

jack.henschel@aalto.fi

Abstract—In this report we set up a live streaming server using
a combination of stateless and stateful protocols, based on which
we evaluate the performance of these different protocols with
regards to latency. As expected, we find that a stateful protocol
like RTMP has the lowest latency while suffering from scalability
limitations. Stateless protocols, such as HLS and DASH, exhibit
a higher latency but are easier to scale, e.g. by using a CDN
which we also analyzed. Specific fine-tuning of the streaming
parameters for the stateless protocols is found to bring down
their end-to-end-latency.

Index Terms—video, live, streaming

I. INTRODUCTION

Over the last decade live streaming has become extremely
popular following the success of video-on-demand services.
Nowadays, there are many professional live streaming services
on the Internet (e.g. broadcasts from sports events) but also a
large amount of streaming services for amateurs (e.g. Twitch),
though the distinction between these is becoming increasingly
blurred. In addition to the goals of video-on-demand (qual-
ity of experience, delivery cost), live streaming has another
important metric: latency.

The lower the latency is, the more the audience is engaged
and feels part of the event. Especially for applications that con-
tain feedback mechanisms, such as live chat among multiple
users and the stream source producer, the quality of engage-
ment is extremely important. Thus, we will closely examine
this special metric across multiple streaming protocols in this
report.

There exist two different types of streaming protocols:
stateful and stateless protocols. Stateful protocols, of which
RTMP is an example, provide lower latency compared to
stateless protocol, but scale poorly with increasing number
of users. RTMP in particular pushes new video data to clients
in real time, resulting in a larger CPU utilization and thus
increased delivery costs for the operator. [1]

Stateless protocols, like DASH and HLS that are both based
on HTTP, require the client to periodically pull new video
data from the server. Though with HTTP/2 server push it
is possible to directly transfer segments from the server to
the client, the underlying concepts of chunked encoding is
still the same. DASH, or the MPEG-DASH standard to be
precise, is an open format for adaptive bitrate streaming. The
DASH manifest is commonly stored in a .mpd file (Media
Presentation Description) and is formatted as XML. New video
segments are added to this manifest file by the server and
the client fetches these new segments from the server, like
a playlist. HTTP Live Streaming (HLS) is a streaming video

protocol developed by Apple Inc. Just like DASH, HLS uses
HTTP transactions which traverse firewalls, proxies, and can
be distributed through CDNs with ease. Therefore, both DASH
and HLS technology are able to reach a much larger viewing
audience than RTMP or other any other streaming protocol.
Most of the live streaming video online today is done via
HTTP.

II. EXPERIMENTATION SETUP

Fig. 1. Overview of live streaming setup with RTMP, DASH and HLS

Nginx is an extremely versatile HTTP web server, reverse
proxy, load balancer and HTTP cache and is available as Free
Software [2]. Most importantly for us, its functionality is easily
extensible by using “modules”. To serve the video stream to
our clients, we set up an Nginx web server (version 1.14) with
the RTMP module on a Google Cloud Compute instance of
type n1-standard-1 with 1 vCPU, 3.75 GB main memory
and a 10 GB Debian Buster (10.2) disk image. [3]

This gives us full control over the web server and streaming
configuration. The round-trip time (RTT) to the server located
in a datacenter in Finland is 32 milliseconds on average, with a
standard deviation of 4.7 milliseconds, from our vantage point
at the Aalto University, Espoo. We use these results to establish
that the round-trip time will be negligible in the latency results
for the rest of the report.

The full Nginx configuration file is shown in Figure 11. In
the rtmp block we configure the RTMP server to listen on
port 1935, the IANA standard port for RTMP connections.
Then, in the application block we allow all clients to
stream our video without authorization (line 16) and enable

Fig. 2. RTMP Stream Ingestion

ffmpeg -re -i $VIDEO_FILE \
$CODEC_OPTIONS -f flv \
rtmp://example.com/live/stream-key

Fig. 3. Viewing the Video Stream

Stream HLS
mpv http://example.com/hls/stream-key/index.m3u8

Stream DASH
mpv http://example.com/dash/stream-key/index.mpd

Stream RTMP
mpv rtmp://example.com/live/stream-key

live streaming mode (line 17). Next, we set up HLS streaming
(line 19), configure a path where Nginx can store the segments
(line 21) and set the segment size to 5 seconds (line 22). We
repeat the same for DASH streaming (line 23-27) and finally
disable permanent storage of the video segments (line 29).

It is important to set the correct Cross-Origin Resource
Sharing (CORS) headers for the web server, otherwise modern
web browser will refuse to load the video segments (line 64-
74). For DASH and HLS, the “Content-Type”, “Origin” and
“Range” headers need to be allowed for HTTP GET, HEAD
and OPTIONS methods.

This setup allows RTMP for ingesting live video streams
(Figure 2) and RTMP, DASH as well as HLS for viewing the
video stream (Figure 3). It is important to allow TCP traffic
on port 1935 in the host’s firewall to allow RTMP streaming.

In our test setup we used FFmpeg version 4.1
(4.1.4-1 deb10u1), MPV version 0.29.1 and VLC media
player 3.0.8 (Vetinari, revision 3.0.8-0-gf350b6b5a7).

To conduct our latency measurements, we used two laptops
side-by-side (Figure 4) The left one is streaming the video
file to the server and at the same time playing the video on-
screen. The right one is playing the three video-streams from
the server (from left to right: HLS, DASH, RTMP). We then
record a video of both laptops and analyze the time differences
between scene changes in video editor. This setup allows us
to precisely determine the end-to-end latency of all involved
components: stream ingestion, processing on the server, stream
download and playback client-side.

For our tests we used a standard test video with easily
identifiable scene changes, resolution of 1920x1080 pixels
and 25 frames per seconds. [4] We streamed this video with
FFmpeg to the server. The exact command is shown in Figure
12. We also experimented with using live footage from a
webcam, but that made it more difficult to precisely measure
the delay (Figure 13). Therefore we based our experiments on
the test video instead.

Fig. 4. End-to-end latency measurement setup

III. ANALYSIS

As outlined in the introduction, one of the most important
parameters for live video streaming are the keyframe interval
together with the segment size (for HTTP streaming). The
keyframe interval specifies how often a keyframe is inserted
into the video stream. Keyframes contain the entire picture
of a video without reference to any other frames of the
video. As they incorporate all of the information about the
pixels in each image, they take up a lot more space and are
much less frequent than the other types of encoding frames.
After encoding, the video needs to be divided into short
segments where each segment has to start with a keyframe.
The keyframe interval is commonly set through the “group
of pictures”, or GOP, parameter. A GOP in a compressed
video stream means that the decoder doesn’t need any previous
frames in order to decode the next ones.

The rest of this section will report on three different
experiments. We first analyze the effect of varying segment
size and GOP size on the latency for all protocols. Secondly,
we determine the impact a CDN has when leveraging it our
live streaming. Lastly, we analyze how the latency develops
over time in a live stream.

TABLE I
TEST SCENARIOS

Scenario Segment Size GOP (frames) CDN
Baseline 5s 50 No

2 1s 25 No
3 5s 125 No
4 10s 250 No
5 15s 375 No

With CDN 5s 50 Yes

1) GOP and Segment Size: The segment size for DASH and
HLS chunks should be a multiple of the GOP size in order
to guarantee that each segment can be decoded individually.
Otherwise, if a segment gets delayed or lost the next segment
may not be decodeable. We decided to set the GOP size
and segment size equal to each other for our main scenarios.
Because the GOP is expressed in frames instead of seconds, a
size of 25 means that it is set to 1 second, because the video
we used is encoded at 25 frames per second.

We varied these two parameters from very small values (1
second) to large values (15 seconds) and conducted our mea-

surements. The resulting latencies of the different technologies
are plotted in Figure 5.

Fig. 5. End-to-end latency measurements for three different streaming
protocols.

The first observation is that segment size and GOP do
not affect the latency of RTMP streaming. This confirms our
expectation since the streaming server is just relaying the
individual packages it receives from the streaming source to
the clients. Thus there is no buffering or processing involved
and the latency is consistency very low, 1.56 seconds on
average.

On the other hand, the latency of DASH and HLS streaming
strongly correlates with the two parameters. With a segment
size of 1 second we were able to achieve an end-to-end latency
of 4 seconds with the HLS client and 16.89 seconds with the
DASH client. With increasing segment size also the latency
increased. For lower segment sizes HLS seems better suited
than DASH, while for a segment size of 15 seconds the latency
of these two converges to nearly the same value, about 37
seconds.

The increasing latency matches our expectation. When the
stream starts the server first has to buffer the incoming video
stream before it can produce the first chunk (e.g. 10 seconds).
Then, when the clients downloads and plays this segment,
the server is already generating the next segment. But since
only a complete segment can be downloaded from the server,
the client is always lagging behind. When the segment sizes
become larger, these offsets in latency therefore naturally also
begin to build up.

This is also reflected in the fact that during our experiments
we observed that increasing the segment size also increases
the stream startup latency, i.e. the time between when the
streaming source starts uploading the video and the time when
the first segment is available for the clients. Which of course
is also due to the fact that the server and the streaming
source first need to create a complete segment before it can
be streamed by clients.

While short segments are good to quickly adapt to band-
width changes and prevent stalls, longer segments have a better
encoding efficiency and quality. As Bitmovin found in their
research, small segments, such as 1 second ans below should
generally be avoided since the PSNR (“perceived signal to

noise ratio”, i.e. subjective quality of the video) decreases
quickly. [5]

In our experiments we identified the following sources of
latency that contribute to the end-to-end latency.

• video stream producer encoding
• upload from video producer to server
• server buffering and processing
• client video segment download
• client video buffering

Depending on how the client is configured, the client-side
buffering can have a major effect on the total latency. Having a
large playback buffer on the client-side generally enhances the
smoothness of video playback, i.e. if there are network issues
the playback can still continue from the buffer. However, since
this buffer first has to be filled (e.g. 10 seconds) it also adds
the buffer length as additional latency.

2) Usage of CDNs: Another source of latency that we
wanted to evaluate is the use of a CDN (“content distribution
networks”). CDNs allow website operators to bring their
content closer to their users by caching content on CDN
proxies. In additions it also allows a CDN’s customers to
distribute their content worldwide and to reduce the load on
their own web servers.

In order to investigate its effect on the video streaming
latency, we set up a Cloudflare CDN proxy in front of our
web server. The HTTP streaming clients no longer directly
access our web server, but rather go to Cloudflare’s proxies
which in return fetch the video segments and metadata from
our server. The RTMP client still directly accesses our server
since Cloudflare only proxies HTTP-based connections. This
led us to remove the RTMP measurements from the results, as
it is not different from the earlier experiments and thus would
not add anything of analytical value.

Fig. 6. End-to-end latency measurements for the baseline case with and
without CDN.

Figure 6 presents the resultant latency for the baseline case
as specified in Table I compared to the latency for both
streaming clients for the scenario with the Cloudflare CDN
in between.

The results clearly show that the streaming latency increases
for both clients when a CDN is used, compared to a scenario
where the clients could directly access the server. This is

caused by the fact that the placement of the CDN in this
case merely adds extra network hops in between the server
and the clients. For a scenario with a single client, by adding
extra nodes on its connection to the server the end-to-end
latency can only increase. Similar to the principle of triangle
inequality. In that sense, we are not using the CDN to its
full potential. It will only provide an advantage when many
different clients are streaming a video stream that is cached by
the CDN. In that case the CDN can return the same segments
that are being requested by all the clients, without having to
query the streaming server itself more than once for a segment.
We did however not replicate these tests with a larger number
of clients. This is something that could be done in future work.

3) Long-running streams: As a final test we observed the
latency of all video streaming protocols over time for a longer
streaming duration. Hypothetically, these results should not
differ from the observations we made earlier that were only
based on single measurements at the start of the stream.
The latency is expected to remain relatively stable over time,
because no extra burdens will be introduced. The GOP size
was set to 75 frames, or three seconds, and the segment size
for HLS and DASH was set to 6 seconds.

Fig. 7. End-to-end latency measurements for three different streaming
protocols over time.

Figure 7 presents the results over an eight-minute time-
frame. Both RTMP and HLS conform to our hypothesis.
However, we observe a strongly increasing latency for the
consumption of the livestream by the DASH client. The first
latency observation of DASH that we made is similar to
what we expected based on our observations in earlier tests.
All measurements that we took later exhibit the pattern of
increasing latency.

Since these results deviate surprisingly much from our
expectations, we repeated the experiment over a longer time
frame. However, the results, shown in Figure 8, were still the
same.

We also experimented with disabling client side buffering
in MPV (with the --cache=no parameter), the results are
depicted in Figure 9. In this case we could see lower initial
latency values for DASH, 10.42 seconds without buffer com-
pared to 18.59 seconds with buffer. Nevertheless, the latency
of DASH quickly accumulated to values of multiple minutes.

Fig. 8. Repeated, end-to-end latency measurements for DASH and HLS over
time.

Fig. 9. End-to-end latency measurements without client buffer for DASH and
HLS over time.

Fig. 10. End-to-end latency measurements with VLC for DASH and HLS
over time.

We could not come up with a good explanation for this
behavior except that the DASH implementation in MPV is er-
roneous, i.e. failure to produce non-gapless playback between
segments. Thus we decided to test the DASH streaming with
another popular media player, VLC. The long term results
are shown Figure 10. The results of both DASH and HLS
also behave the way we expected: the latency varies slightly
over time (few seconds) and does not drastically increase.
But again we can see that overall HLS performs slightly

better (average of 9.8 seconds) than DASH (15.2 seconds),
leading us to the conclusion that HLS is better optimized
for live streaming, hence the name “HTTP Live Streaming”,
than DASH. Additionally, we also saw that using VLC for
streaming had lower CPU utilization than MPV which might
also be related to MPV’s increasing latency.

Further optimization of DASH delivery, for
example changing DASH manifest attributes such as
availabilityStartTime and minBufferTime, could
further improve the end-to-end latency. [6] However, this was
outside of the scope of this report.

IV. CONCLUSION

In this report we set up our own live streaming server and
investigated the performance of a set of stateful (RTMP) and
stateless (HLS, DASH) streaming protocols with regard to
latency. As expected, using RTMP for the client consistently
offers the lowest end-to-end latency. HLS and DASH stream-
ing are an order of magnitude “slower” compared to RTMP,
depending on the exact configuration. However, since they are
based on HTTP, they provide an easy solution to distribute the
video data among thousands of users by employing a CDN in
front of the origin server. RTMP on the other hand struggles
to scale to so many clients due to the stateful nature of the
protocol.

Another disadvantage of the RTMP protocol is that it is
relatively obscure in the internet landscape and therefore using
it may not be possible in some networks due to firewall
restrictions.

HLS and DASH stay relatively stable in their latency over
time, except for the MPV media player, where we discovered
that there must be an error in the DASH client, because
the latency built up way beyond normal behavior. Additional
experiments showed that this erroneous behavior does not
occur in other media players.

We also showed that with some tuning of the streaming
parameters on the producer, the server and the client side, it
is possible to bring the latency of stateless protocols closer to
the level of stateful ones.

When choosing a streaming protocol it is up to producers
and distributors to find a balance between quality of experi-
ence, latency and operating cost depending on their particular
use-case. If the intended audience will be small and latency
minimization is important, then we recommend RTMP. In all
other circumstances we recommend the use of HLS, because
this protocol provides the scalability advantages of HTTP
streaming and performs with a lower latency compared to
DASH, based on our experiments.

REFERENCES

[1] Bolun Wang et. al., “Anatomy of a Personalized Livestreaming Sys-
tem”, Proceedings of the 16th ACM SIGCOMM Internet Measurement
Conference (IMC) , 2016.

[2] “nginx”, http://nginx.org/en/, 2019.
[3] Roman Arutyunyan, “NGINX-based Media Streaming Server: nginx-

rtmp-module”, https://github.com/arut/nginx-rtmp-module, 2017.
[4] Florin1up, “Full-HD Testcharts”, https://www.youtube.com/watch?v=

tPdLZ9g0l28, 2014.

[5] Stefan Lederer, “Optimal MPEG-DASH & HLS Segment Length”, https:
//bitmovin.com/mpeg-dash-hls-segment-length/, 2015.

[6] Romain Bouqueau, “Diving into ultra-low latency for live
using MPEG-DASH”, https://www.gpac-licensing.com/2014/07/09/
lowering-dash-live-latency-240ms/, 2014.

http://nginx.org/en/
https://github.com/arut/nginx-rtmp-module
https://www.youtube.com/watch?v=tPdLZ9g0l28
https://www.youtube.com/watch?v=tPdLZ9g0l28
https://bitmovin.com/mpeg-dash-hls-segment-length/
https://bitmovin.com/mpeg-dash-hls-segment-length/
https://www.gpac-licensing.com/2014/07/09/lowering-dash-live-latency-240ms/
https://www.gpac-licensing.com/2014/07/09/lowering-dash-live-latency-240ms/

Fig. 11. Nginx web server configuration
1 user www-data;
2 worker_processes auto;
3 pid /run/nginx.pid;
4 include /etc/nginx/modules-enabled/*.conf;
5
6 events {
7 worker_connections 768;
8 }
9

10 rtmp {
11 server {
12 listen 1935;
13 chunk_size 4096;
14 application live {
15 # enable live streaming for all clients
16 allow play all;
17 live on;
18 # enable and configure HLS
19 hls on;
20 hls_nested on;
21 hls_path /var/www/hls;
22 hls_fragment 5s;
23 # enable and configure DASH
24 dash on;
25 dash_fragment 5s;
26 dash_path /var/www/dash;
27 dash_nested on;
28 # do not store stream permanently
29 record off;
30 }
31 }
32 }
33
34 http {
35 sendfile on;
36 tcp_nopush on;
37 tcp_nodelay on;
38 keepalive_timeout 65;
39 types_hash_max_size 2048;
40 include /etc/nginx/mime.types;
41 default_type application/octet-stream;
42 types {
43 application/vnd.apple.mpegurl m3u8;
44 }
45 access_log /var/log/nginx/access.log;
46 error_log /var/log/nginx/error.log;
47 gzip on;
48
49 server {
50 listen 80;
51 root /var/www/;
52 index index.html index.htm;
53 server_name _;
54
55 # show nginx connection status
56 location /stats {
57 rmtp_stat all;
58 rmtp_stat_stylesheet stat.xml;
59 }
60
61 location / {
62 # disable cache
63 add_header Cache-Control no-cache;
64 # CORS setup
65 add_header ’Access-Control-Allow-Origin’ ’*’ always;
66 add_header ’Access-Control-Expose-Headers’
67 ’Content-Length,Range,Content-Type,Origin’;
68 # allow CORS preflight requests
69 if ($request_method = ’OPTIONS’) {
70 add_header ’Access-Control-Allow-Origin’ ’*’;
71 add_header ’Access-Control-Max-Age’ 1728000;
72 add_header ’Content-Type’ ’text/plain charset=UTF-8’;
73 add_header ’Content-Length’ 0;
74 return 204;
75 }
76 }
77 }
78 }

Fig. 12. Video Streaming with FFmpeg

ffmpeg -re -i $VIDEO_FILE \
-c:v libx264 -preset veryfast \
-maxrate 3000k -bufsize 6000k \
-pix_fmt yuv420p -g 50 \
-c:a aac -b:a 160k -ac 2 -ar 44100 \
-f flv rtmp://example.com/live/stream-key

Fig. 13. Webcam Streaming with FFmpeg

ffmpeg -re -f v4l2 -framerate 30 \
-video_size 1280x720 -i /dev/video0 \
-c:v libx264 -preset veryfast \
-maxrate 3000k -bufsize 6000k \
-pix_fmt yuv420p -g 50 \
-f flv rtmp://example.com/live/stream-key

	Introduction
	Experimentation setup
	Analysis
	GOP and Segment Size
	Usage of CDNs
	Long-running streams

	Conclusion
	References

