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Abstract—This report is a research into the video distribution
and caching strategies employed by YouTube. We collect data
from multiple continents for a multitude of videos. Our analyses
find geolocations of cache servers used by YouTube, measure
their performance and interpret the cache host names. Our data
did not support any clear strategy based on time of the week or
region, with the exception of the case for uploading a video, in
which the region of upload had a clear advantage for the first
hour after publishing compared to other regions. We conclude
by formulating our expectation that the distribution and caching
in YouTube’s infrastructure is currently largely governed by
machine learning models and therefore our research could not
find a clearly discernible strategy.

Index Terms—video, distribution, cdn, youtube

I. INTRODUCTION

In this report we formulate hypotheses on the strategies
employed by YouTube in their distribution and caching of
videos around the world, based on the data we will collect
from different geographical vantage points. The intention of
this research is to gain an understanding of the infrastructure
of YouTube and its workings, which are arguably a blackbox
in the current public knowledge.

First, we need to know how the basic setup of YouTube’s
video and load distribution works. When a client requests a
video from YouTube’s website youtube.com, the web frontend
returns a rendered HTML webpage which contains a link
pointing to a specific cache server (e.g. r4---sn-4g5e6nsd.
googlevideo.com). YouTube does not disclose how and based
on which parameters this cache server URL is generated,
but by querying many different videos from different client
locations we can infer a part of their strategy. Second, the
client has to resolve the given hostname to an IP address.
Depending on the particular DNS configuration, the DNS
server will also refer to different IP addresses for different
clients for the same hostname. After connecting to this IP
address, the client can stream the video from YouTube’s
CDN infrastructure (backend servers). This entire process is
illustrated in Figure 1.

II. PART 1

In the first part of this report, we are investigating how
YouTube dynamically returns different video cache servers
for different users all over the world. We also run additional
measurements to see how well this infrastructure works to
improve the quality of experience (QoE) for the users. We
will formulate conclusions about the video caching strategies
of YouTube based on our findings.
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Fig. 1. High-level overview of YouTube video streaming

A. Experimentation setup

Firstly, we composed a diverse list of videos which we will
use in our experiment. We decided to use two videos for each
of the major continents: one video that is very popular on
the continent and another one that is rather obscure. Thus, we
have a total of ten videos for our measurements (Table I).

TABLE I
MEASUREMENT VIDEOS

Video ID Continent Type Views
WuWQn0SZ54 Asia Popular 500k

ty19DTniYR0 Asia Obscure 9
8mMAHPEkmuM Africa Popular 750k
6eGaPzFAUdU Africa Obscure 400
Jzl nrTkfIM South America Popular 500m
gnBQ kc6Zxg South America Obscure 66
OEsfbBHdqAc North America Popular 2.5m
9hj9eNvjLtE North America Obscure 160
8ma7afWF7r0 Europe Popular 3m
m4QacHOQHwI Europe Obscure 100

We use virtual machines deployed across four major conti-
nents to conduct our measurements. The locations are Europe
EU (Frankfurt), North America NA (Iowa), South America
SA (Sao Paolo) and Asia AS (Taiwan). Ideally, we would have
also liked to deploy a VM in Africa, but our cloud provider
of choice is not offering any resources there.

youtube.com
r4---sn-4g5e6nsd.googlevideo.com
r4---sn-4g5e6nsd.googlevideo.com
https://www.youtube.com/watch?v=_WuWQn0SZ54
https://www.youtube.com/watch?v=ty19DTniYR0
https://www.youtube.com/watch?v=8mMAHPEkmuM
https://www.youtube.com/watch?v=6eGaPzFAUdU
https://www.youtube.com/watch?v=Jzl_nrTkfIM
https://www.youtube.com/watch?v=gnBQ_kc6Zxg
https://www.youtube.com/watch?v=OEsfbBHdqAc
https://www.youtube.com/watch?v=9hj9eNvjLtE
https://www.youtube.com/watch?v=8ma7afWF7r0
https://www.youtube.com/watch?v=m4QacHOQHwI


Our measurements are automatically collected every four
hours: at 0:00, 4:00, 8:00, 12:00, 16:00 and 20:00 o’clock
(six measurements per day). The time between these runs
allows the videos to be evicted from the network caches again,
thus our measurements should not be of any influence to
the observed performance in our experiments. We run these
measurements continuously for one week, so we can also
capture differences in the video cache distribution strategies
employed by YouTube at different days in the week.

Thus, in total we collected measurements on 10 videos
from 4 geographically different vantage points with 6 runs
per day on 7 consecutive days, resulting in 1,680 unique
measurements.

To collect the various important variables for video stream-
ing (such as server hostnames, IP addresses, latency etc.),
we use the Pytomo tool. It was initially developed in 2011
to analyze YouTube’s infrastructure by setting up a lot of
monitoring agents on home internet connections [1]. Since it is
a relatively old program, we had to apply a few modifications
in order to have it function correctly in the current landscape
of YouTube’s infrastructure (YouTube refuses any kind of
unencrypted HTTP connection, but Pytomo has these hard-
coded in a lot of places).

Furthermore, Pytomo’s way of saving the data is inadequate
for data analysis. For each run, Pytomo creates a new database
named according to the current time. In this database file there
is a table, that is also named according to the time of the run,
but in a slightly different format. For example, during the week
of our data collection Pytomo created 42 individual database
files containing one unique table each, instead of reusing the
same database, possibly with different table names.

To analyze all our measurements (which were conducted
at different times and on different machines), we wrote a
custom script to download and merge all the databases into
one. Equipped with this database, we can analyze our data
effectively.

B. Analysis

1) IP Geolocation: We started by mapping the IP addresses
of the cache servers that returned the video data to our
clients to geolocations. This would help us gain insight into
the locations from where YouTube serves the videos, which
will prove useful in determining their distribution strategy.
Precisely determining the geographical location of a particular
IP address is hard. Even though there are many online services
providing IP to geolocation mappings, in our experience they
locate many of the IP addresses in North America, even
though we had good reason to assume that these servers
actually reside in other continents (proximity measurements
with ping). Thus the geolocation services we had access to
are not precise enough to support our analysis. Despite these
issues, we present our process either way, to show how to
conduct this analysis properly in case the geolocations are
accurate.

Our approach was as follows:

1) Count and group IP addresses of cache servers for every
one of the four continents.

2) Map every IP to a geolocation.
3) Count occurence of IP addresses in a certain region.

This gives us the graph presented in Figure 2. This graph

Fig. 2. Origin of cache servers used to serve requests from our four client
location

clearly supports our earlier observation: the inaccuracy of IP
geolocation databases is a well known problem [3] that we also
encounter with the database we used. [2] When performing
manual RTT measurements, many of the IPs assigned to
the US by the geolocation database have a ping too low to
resemble an intercontinental connection. Our hypothesis is that
due to the volatility of “cloud” systems (like Google’s video
CDN), IP address assignments can change quickly and are no
longer geographically bound. This is especially true for IPv4
addresses which are a scarce resource these days.

We came up with a second method of approximating the
geolocation of the cache servers. The traceroute command
provides the route taken by packets across the network. By
studying the number of hops it takes to reach any of the
IP addresses of the cache servers we found, we are able to
estimate how far away these servers are. All our traceroute
operations were conducted from the Aalto University network.
Thus from this perspective we would expect the number of
hops to be the lowest for European servers, while they ought
to be the highest for Asian or South American servers. We
performed traceroutes on every one of the 104 unique IP
addresses we found during our data gathering phase, grouped
by origin continent. The results are plotted in a boxplot in
Figure 3. This shows us that there is a very clear separation
in the average number of hops it takes to get to a certain
continent. The results are also summed up in Table II.

From these results we conclude that there can be two
reasons for the occurence of servers with a higher hops
distance in Asia and North America. On the one hand the
larger distance could mean that the route goes to a server still
in the same continent, but just a less easily reachable one. On
the other hand the larger distance in hops could mean that the
cache server is not even located in the continent that it served,
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Fig. 3. Boxplot of the number of hops in the network from Aalto University
campus to cache servers in the designated regions.

TABLE II
AVERAGE NUMBER OF NETWORK HOPS FROM AALTO UNIVERSITY

CAMPUS TO THE CACHE SERVERS USED IN THE GIVEN REGIONS

Region Average number of hops
Asia 21.2
Europe 13
North America 18.0
South America 19

but instead resides on another continent. In this case, Asia
is the furthest away in terms of network hops. So this could
mean that some of the cache servers that served requests made
from North America which were found to be of distance 29,
26 or 25 hops away could reasonably be cache servers located
in Asia. We found that the cache server of distance 29 hops
from Aalto University campus has served twelve requests in
total to the client from North America only. The only video it
served, was the popular Asian video. Thus it seems plausible
that this server is a cache in Asia that occasionally serves a
video to a North American client. However, if this would truly
be a cache server located in Asia, then we would expect it to
also serve Asian clients. Our data show no record of any of the
requests originating from Asia to be served by this particular
cache server. So instead, this particular server could also be
a somewhat more isolated datacenter still residing in North
America. The same analogy can be applied to all of these
outlier cases, causing uncertainty for the geolocation of these
particular cache servers.

As a conclusion to our traceroute analysis we state that
the large majority if not all requests made by a client on a
certain continent will be served by cache servers on that same
continent. The clear distinction in number of network hops for
all continents supports this conclusion, with the rare outlier not
being straightforward to interpret.

2) Proximity to YouTube: We then looked at the proximity
between our VMs and YouTube’s infrastructure. For this

purpose we used the average measured ping to the server. From
Figure 4 we can see that our system in North America had by
far the “longest” connection to YouTube, though compared to
most residential connections an average ping of 11 ms is still
very quick. The other clients had a very good connection to
YouTube’s servers (within a few milliseconds). We suspect this
is due to the fact that we rented elastic cloud VMs which are
run on servers in datacenters that are extremely well connected
with all major and important networks worldwide.
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Fig. 4. Boxplots of average ping between VM and YouTube infrastructure
for each location

Additionally, Figure 4 also shows that the metric does not
differ significantly when querying either a popular video or an
obscure video. A few outliers are not shown in the boxplots to
make the rest of the graph more readable. These outliers most
likely correspond to sporadic network failures or congestion
issues and are not statistically relevant.

3) Streaming Startup Delay: Next we analyzed the “Time-
ToGetFirstByte” metric which refers to the time it took the
cache server to respond to the clients streaming request with
a first chuck of video. We expected there to be a significant
difference between popular and obscure videos, based on our
assumption that YouTube caches popular videos more aggres-
sively and at the same time evicts obscure videos relatively
quickly from its caches. Our findings in Figure 5 do not show
behavior in line with our hypotheses, however. One plausible
explanation is that YouTube has tweaked and optimized its
infrastructure a lot to minimize the startup delay for its clients.

Figure 4 and 5 consistently show that the client location
in North America (Iowa) has the “longest” connection to
YouTube’s infrastructure compared to the other vantage points.

Another comparison we deemed interesting was the cor-
relation between the geographical proximity to YouTube’s
servers and the video streaming startup delay. We can use
our ping measurements as an estimate for the proximity and
the TimeTogetFirstByte for the startup delay.

With these measurement we can calculate the correlation
value according to the following formula (with X as the
proximity and Y as the delay):

ρX,Y = corr(X,Y ) =
cov(X,Y )

σXσY



Fig. 5. Average streaming startup delay, for each video type and client location

Having done this for each client location and video type
individually, we obtain Table III. In the case of the vantage
points in Asia (AS) and South America (SA) there is a
strong correlation between the proximity and the startup delay
for unpopular videos. The EU and NA cases however are
more inconsistent. The EU client location shows very little
correlation between these two values, while the US location
shows only a strong correlation for popular videos. Thus we
cannot draw any clear conclusion from this metric.

TABLE III
CORRELATION BETWEEN PROXIMITY AND DELAY

EU NA SA AS
Popular 0.1292 0.6398 0.0181 -0.0334
Obscure -0.0881 0.3226 0.8598 0.7406

4) Timeseries: We also looked into how the response times
from the cache servers behave over the course of a week.
Figure 6 and 7 show the “TimeTogetFirstByte” metric for two
of our videos (Y axis) from all our vantage points (Legend)
for each of our measurements (X axis). These two diagrams
confirm again that the compute instance in North America
had the slowest connection to Youtube’s video servers. The
high spikes in both diagrams are likely just outliers (probably
influenced by other network traffic) and can thus safely be
ignored.

The measurements of the popular video (Figure 6) are a
lot more volatile than the obscure video (Figure 7) which is
what we would expect from a video with very high demand.
Unfortunately, in both figures we can not really identify a clear
pattern describing when the TimeToGetFirstByte will be low
or high.

Figure 8 plots the delay of the answer from the cache server
for the popular Asian video. Most notably, the client in South
America has to wait the longest for an answer from the cache
server, whereas the client in Asia gets the quickest response.
Again, there are no time-based patterns in the plot which is
what we initially expected to find (e.g. high load in the evening
influences delay from cache server).

5) Hostname analysis: After analysis of the gathered data,
we propose an interpretation of the structure of cache URLs.
Consider the following URL:
https://r5---sn-4g5ednle.googlevideo.com

The last part of the subdomain, 4g5ednle in this URL,
is thought to identify a cluster of cache servers in geographic
vicinity of each other. Let us call this a service node ID. The
first part of the subdomain, r5 in this example, refers to a
specific ingress point to that cluster. There are r1 through
to r6 ingress points in each cluster. sn most likely stands
for service node, based on the terminology used in Google
infrastructure. [4]

While we believe the service node IDs to be of random
structure, we have found similarities in their prefixes that
coincide with the region served by the service nodes. These
are summarized in Table IV.

TABLE IV
CACHE URL PREFIXES PER REGION

Region Prefixes
AS un57
EU 4g5e
NA vgq, qxo
SA bg0

This indicates that YouTube has a structure for generating
cache URLs for regions, despite the lack of an encoded name
of a specific region. Based on our data we can draw no
conclusions about the selection of the remaining characters
in the service node ID. Thus as far as we can say, they are
randomly generated to satisify the requirement for unique IDs.

These prefixes will not be the only ones in use for the
YouTube infrastructure. This experiment could after all only
capture a small part of the total infrastructure. Our data also
show a few instances of other service node ID prefixes, for
example when an occasional redirection to a different cache
URL occurred.

6) Redirects: Of the 1680 measurements we collected, only
40 got a redirect from the cache server. This means the cache
server redirects the client to a different cache server with
HTTP status code 302 instead of serving the video file directly.
Of these 40 redirects, 20 were for popular videos and again
20 for obscure videos. There are two possible scenarios in
which a cache server would redirect the client: a) the cache
server is overloaded with requests, thus directs the client to
a different server or b) the cache server does not have the
requested video file available and also can not fetch it in the
background. Looking at our data, we could not find a clear
indicator for when these redirects occur.

There emerged two different redirect URL patterns
from our data. Either the client first queries https:
//redirector.googlevideo.com to be redirected to an ac-
tual video cache server (such as https://r3---sn-vgqsrnek.
googlevideo.com) or the client queries an actual cache
server but gets redirected to a different instance (e.g.
from https://r3---sn-vgqs7nlk.googlevideo.com to https://
r6---sn-vgqs7nlk.googlevideo.com). The latter type of redirect

https://redirector.googlevideo.com
https://redirector.googlevideo.com
https://r3---sn-vgqsrnek.googlevideo.com
https://r3---sn-vgqsrnek.googlevideo.com
https://r3---sn-vgqs7nlk.googlevideo.com
https://r6---sn-vgqs7nlk.googlevideo.com
https://r6---sn-vgqs7nlk.googlevideo.com


Fig. 6. TimeToGetFirstByte of popular European video

Fig. 7. TimeToGetFirstByte of obscure South American video

Fig. 8. CacheServerDelay of popular Asian video

only occurs within the same cluster of cache servers (e.g. from
r3 to r6). Our hypothesis is that all cache servers within one
cluster (same service node ID, e.g. vgqs7nlk) work together
as a unit (i.e. serving different videos to different users).

III. PART 2

This part explores the distribution and caching strategies
YouTube employs on their platform for newly uploaded
videos.

A. Experimentation setup

First we created a unique, high definition video and up-
loaded it via the YouTube web interface from the Aalto
University campus in Finland. We again employ four virtual
machines at the different physical locations around the world
as expanded upon earlier. On all four machines, we run the
Pytomo tool for our newly uploaded video at different intervals
after the original time of upload. These are as follows: 1
minute, 5 minutes, 15 minutes, 30 minutes, 60 minutes, 2
hours, 6 hours, 12 hours. Because these are being conducted



on four continents simultaneously, it will result in 32 unique
measurements. Our intention by selecting these delays is to
gain an understanding of the completeness of YouTube’s video
caching and distribution strategy over time.

Additionally, we look at the Developer Tools integrated
into modern web browsers. The “Networking” tab shows the
requests a website makes in the background and thus also
reveals information about the CDN infrastructure.

B. Analysis

Figure 9 shows how the TimeToGetFirstByte metric behaves
in the different locations over the course of 12 hours after the
video has been uploaded. Figure 10 illustrates the download
time of our uploaded video, again for the different locations
over the course of 12 hours. In both figures the EU client
location consistently has the best performance. This matches
our expectation since the source video was uploaded from
the EU region (Helsinki). Thus, logically YouTube will first
distribute the video there before also replicating it to other
continents. After as little as half an hour this process is already
completed. We can infer this from the figures since all client
locations exhibit the same performance after half an hour.

Fig. 9. Time to get first byte for custom uploaded video

Fig. 10. Download time for custom uploaded video

To make these results more sound, we ran a second ex-
periment: this time uploading a video from a client location
in South America (Sao Paolo). Again, we used all our client

locations to generate measurements for this particular video.
The results in are the same as before: Both Figure 11 and
12 clearly show that the region where the video was initially
uploaded to consistently has the best performance (in this case:
SA). The access times from the other locations (AS, EU, NA)
are a lot higher at first (multiple seconds), but after roughly
half an hour the performance of all client locations converges
to the same level (few hundred milliseconds).

Fig. 11. Time to get first byte for second uploaded video

Fig. 12. Download time for second uploaded video

Another interesting observation we made while uploading
videos through YouTube’s web interface was that the video
server cache URLs differ between the video uploader and other
users or viewers. The uploader gets a URL of the form https:
//r1---sn-bg07dnsr.c.youtube.com, whereas others get URL
likes https://r1---sn-5hne6nsd.googlevideo.com. There seem
to be two different caching services at work here. We assume
the first one (*.c.youtube.com) is more direct, meaning it
always returns the most current version of the video to the
content creator (e.g. when YouTube is processing the video).
This cache can likely only handle less load compared to
*.googlevideo.com which is used to serve all other users.

IV. LIMITATIONS

The biggest challenge for this report was trying to look
inside Google’s Autonomous System (AS) which is where
YouTube’s services run. An autonomous system (AS) is a

https://r1---sn-bg07dnsr.c.youtube.com
https://r1---sn-bg07dnsr.c.youtube.com
https://r1---sn-5hne6nsd.googlevideo.com
*.c.youtube.com
*.googlevideo.com


network or a collection of networks that are all managed and
supervised by a single entity or organization. As soon as our
traffic to YouTube entered Google’s AS it became extremely
hard to estimate server location, due to the fact that both
the hostnames of the systems are cryptic as well as the IP
addresses could not be pin pointed.

Inaccurate geolocation IP databases were the second big
impediment in conducting this research. Most of the freely
available databases seem to consist of old, incomplete or
inaccurate data. We verified this by doing manual proximity
measurements with ping. Most of the IP addresses we col-
lected were assumed to be from the US (according to the IP
databases), but our measurements quickly confirmed that the
servers where either much closer (e.g. Europe) or much further
away (e.g. South America and Asia). We assume this is due
to the fact that in the cloud landscape IP address assignments
can quickly and unexpectedly change location.

The fact that we had to use cloud-based virtual machines
may be another limitation of our experimental setup. We
had however no other option if we wanted to conduct our
experiments world wide. But since these VMs are located in
extremely well interconnected datacenters, their proximity to
YouTube’s server infrastructure was extremely close. Much
closer than what an average home internet connection would
have. Therefore any observed differences would be much
smaller and thus easier to overlook.

V. CONCLUSION

In this report we conducted active measurements of the dis-
tribution of videos by YouTube to its end users by simulating
users viewing a multitude of different videos from four differ-
ent continents. The intention was to gain an understanding of
the strategies employed by YouTube for its video distribution
and caching.

Our analysis established that videos are most likely always
served from cache servers residing on the same continent or
in the same region as the end user, even for content that is
mostly popular in a completely different part of the world,
or when it is not popular at all. We conclude from this
that YouTube’s global infrastructure is so powerful that it no
longer has to focus on savings on a continental scale. For
intracontinental connections, the delay between an end user
and YouTube’s infrastructure is also low, which contributes to
the overall fast availability of the video services. Even though
we found that popular videos were started faster on average
than unpopular ones, the practical difference for an end user
is almost negligible. We also established some structure and
found some patterns in the format YouTube uses for their
cache server host names. When uploading our own videos,
we noticed a very clear advantage in availability for the region
from where we uploaded the video. Thus a video spreads from
its region of upload across the rest of the global infrastructure
of YouTube.

Our overall observation is that YouTube offers a nearly
uniform quality of service for viewing their videos globally.
Our research shows no distinct differences over time of the

week nor for any specific regions in any of our test cases.
From our data only arises a general tendency of popular videos
being served slightly faster than more obscure content. This
uniform experience and lack of clearly discernable strategies
leads us to believe that much of the video distribution and
caching are currently being managed by machine learning and
game theoretic models that are highly optimized for general
quality of service and quality of experience parameters. [5]
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