
A comparison of multi-core flow classification methods for
load balancing

Max Crone <mccrone@kth.se>
Anna Fernandez-Rajal <annafris@kth.se>

Quang Le <dqle@kth.se>
Felix Maurer <fkjma@kth.se>

Zhangchi Qin <zhangchi@kth.se>
Kibria Shuvo <gkshuvo@kth.se>

Communication System Design – Final Report

IK2200 Communication System Design
School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

7 January 2021

Academic supervisor: Tom Barbette



© KTH Royal Institute of Technology, 7 January 2021



Abstract

Load balancers enable a high number of parallel requests to a web application
by distributing the requests to multiple backend servers. Stateful load balancers
keep track of the selected server for a request in the flow table. As the flow table
is accessed for each packet, its implementation is crucial for the performance
of the load balancer. In this report, we evaluate and compare three single-core
implementations of flow tables in a load balancer, based on C++ unordered maps,
Cuckoo hash maps, and Hopscotch hash maps. Later, we scale the load balancer
to multiple cores using locks or separate hash maps per running core. The differ-
ent scaling mechanisms are evaluated and compared in terms of throughput and
latency. We also include an implementation based on Cuckoo++ hash maps in our
comparisons, which we selected after reviewing the current literature. All imple-
mentations use FastClick and are evaluated with traffic generated by TRex. The
evaluation combines results from traffic measurement with results from profiling
the various implementations. We show that the implementation of a flow table
based on Hopscotch hash maps performs best, while Cuckoo++ was unexpectedly
shown to perform worse than Cuckoo. For the scaling mechanisms, we show that
one flow table per-core outperforms the locking based approach, because it allows
all cores to process packets independently from each other.

i



Contents

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Sustainability and ethical considerations . . . . . . . . . . . . . . 3
1.6 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Load balancers . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Stateless load balancers . . . . . . . . . . . . . . . . . . . 5
2.1.2 Stateful load balancers . . . . . . . . . . . . . . . . . . . 6

2.2 Data Plane Development Kit . . . . . . . . . . . . . . . . . . . . 8
2.3 FastClick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Hardware-based flow classification . . . . . . . . . . . . 9
2.4.2 Software based flow classification . . . . . . . . . . . . . 9

3 Experimental setup 12
3.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 FastClick configuration . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Stateless load balancer configuration . . . . . . . . . . . . 14
3.2.2 Stateful load balancer configuration . . . . . . . . . . . . 15

3.3 Traffic generation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Stateless traffic generation with TRex . . . . . . . . . . . 17
3.3.2 Stateful traffic generation with TRex . . . . . . . . . . . . 19
3.3.3 Improvements to TRex . . . . . . . . . . . . . . . . . . . 20
3.3.4 Integration in the testing application . . . . . . . . . . . . 21

3.4 Profiling with perf . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



CONTENTS iii

4 Implementation 24
4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Hash tables . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Comparison of reported performance numbers . . . . . . 26

4.2 Single-core load balancers . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Round hashing (stateless) . . . . . . . . . . . . . . . . . 30
4.2.2 Flow table using Cuckoo . . . . . . . . . . . . . . . . . . 30
4.2.3 Flow table using C++ unordered maps . . . . . . . . . . . 31
4.2.4 Flow table using Hopscotch maps . . . . . . . . . . . . . 32
4.2.5 Flow table using Cuckoo++ . . . . . . . . . . . . . . . . 33

4.3 Multi-core load balancers . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Shared mutex lock . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Duplication of the flow table across cores . . . . . . . . . 35

5 Evaluation 39
5.1 Evaluation process . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Scaling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Hash table performance . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion 49
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



List of Figures

2.1 Stateless load balancer . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Stateful load balancer . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Setup of the testbed . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Processing flow of stateless load balancer configuration . . . . . . 14
3.3 Processing flow of stateful load balancer configuration . . . . . . 16

4.1 Cuckoo hashing insertion example . . . . . . . . . . . . . . . . . 31
4.2 Hopscotch hashing example . . . . . . . . . . . . . . . . . . . . 33
4.3 Memory access during lookup of Cuckoo and Cuckoo++ . . . . . 34
4.4 Per-core duplication technique in multi-core load balancer . . . . 36
4.5 Processing flows of multi-core load balancers . . . . . . . . . . . 38

5.1 Throughput of multi-core implementations at 100 Gbps . . . . . . 40
5.2 Profiling of the Hopscotch table with mutex . . . . . . . . . . . . 41
5.3 Latency comparison at flow table load factors of 65% and 95% . . 42
5.4 Throughput of single-core implementations at different flow table

load factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Profiling of single-core implementations . . . . . . . . . . . . . . 44
5.6 Throughput of multi-core implementations at different flow table

load factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Throughput of multi-core implementations at different data rates . 48

iv



List of Tables

3.1 Classification of FastClick functions for perf-class . . . . . . . . . 23

4.1 Compared flow table implementations . . . . . . . . . . . . . . . 25
4.2 Comparison of hash tables . . . . . . . . . . . . . . . . . . . . . 29

v



Chapter 1

Introduction

Internet traffic has been increasing over the last years, and is expected to grow
even further in the coming years [9]. More people are becoming connected to the
Internet. Machine-to-machine traffic is expected to increase significantly as a result
of the consumer and the industrial Internet of Things. Multi-media streaming is
growing in bandwidth needs. The world is far beyond a point where single servers
can accommodate the Internet applications of our time. Large data centers are
being built all around the world to house rows of computer hardware. The purpose
of these servers is to handle the large amount of Internet traffic.

In order to effectively leverage data centers to handle these large amounts of traffic,
network packets need to be distributed among all individual servers. Load balancers
are a critical part in the network that facilitate this. Their purpose is to prevent
individual servers from being overloaded with requests, by distributing the traffic
over many servers. In many cases, the traffic distribution needs to be stored for
correct handling and continuity of a network connection in future communication.
These records are stored in flow tables on the load balancer. The implementational
details of a flow table will contribute to the efficiency of a load balancer. Therefore,
the choice of flow table implementation becomes important.

In this report, we implement multiple flow tables and compare them on a testbed
with network traffic going up to 100 Gbps. Subsequently, we implement and
compare different methods of scaling the flow tables’ operation across multiple
CPU cores. The results of these comparisons will contribute to the use of more
efficient flow tables, and thus to faster and more sustainable operation of load
balancers.

1



1.1. PROBLEM STATEMENT 2

1.1 Problem statement
Despite the existence of multiple traffic classification methods for load balancers,
there is a limited number of studies to compare these techniques to understand
which load-balancing method is the most efficient for each load-balancing scenario.
Therefore, it is necessary to conduct more research that compares different load-
balancing methods.

1.2 Goals
There are three main goals for this project.

Firstly, we aim to study, implement and compare multiple flow tables on a physical
testbed. We use the FastClick [6] framework for routing network packets through
the load balancer and implementing the flow tables.

Secondly, we implement and evaluate multiple methods of scaling the flow tables
to leverage multi-core processors.

Lastly, we perform a literature study into state-of-the-art flow table data structures,
implementing one promising option and comparing its performance directly with
other flow tables.

1.3 Methodology
This project is set up as quantitative research. All flow classification methods will
be compared based on a set of metrics obtained from the experiments we conducted.
In these experiments, we will vary the underlying parameters in order to observe
the change in performance for all solutions. The results serve as the foundation on
which we base our final conclusions and recommendations.

1.4 Limitations
All flow tables are implemented as part of the FastClick framework, which uses
DPDK for packet processing. This work does not compare FastClick with alterna-
tives, as it is beyond the scope of this project.

Additionally, we do not evaluate different load balancing approaches. The distri-
bution of network traffic in our system does not take into account any contextual
parameters besides the identifying five-tuple of network packets. This means we
do not consider CPU load or other indicators of actual load. Neither do we use



1.5. SUSTAINABILITY AND ETHICAL CONSIDERATIONS 3

or evaluate round-robin approaches. The focus of this project is on the flow table
storage, and less on the different solutions for distribution mechanism.

Finally, although we briefly discuss other methods in Section 2.4, this work only
compares solutions based on hash tables.

1.5 Sustainability and ethical considerations
Data centers have become essential computing infrastructure that enable the IT
industry. As the sector grows, these data centers also increase in scale. Data
centers thus require an increasingly large energy budget to operate. A data center’s
energy budget is made up of important components that include cooling, servers
and storage, and networking hardware [12]. Efficient use of these resources, means
that a data center can operate more energy-efficiently. This project contributes to
more efficient use of the available servers and networking hardware. Our work
enables organizations that operate at large scale to choose the more efficient flow
classification methods for their load balancers, which will increase their overall
energy-efficiency. This means that an equal amount of work can be done while
using less electricity, thus contributing to a more sustainable world.

All measurements performed as part of this project are conducted on a dedicated
testbed. Thus, none of these measurements negatively impacts any other processes.
Nor does the project have access to any personal or other privacy-sensitive data.
Finally, none of the synthetic data used during measurements contains any amount
of personal or privacy-sensitive data.

This work extends upon the projects Click and FastClick, which are licensed under
an amended version of the MIT license. It allows “to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so”. The license will be provided
along with the publicly distributed source code of this project.

1.6 Structure of the report
The remainder of this report is organized as follows. Chapter 2 provides technical
background on load balancers, DPDK, and FastClick. It additionally presents
related scientific work. Chapter 3 describes the experimental setup, including a
discussion on traffic generation, and our evaluative approach. Chapter 4 compares
different proposed hash tables for implementing flow tables and selects one of them



1.6. STRUCTURE OF THE REPORT 4

to include in our evaluation. Later details the implementation of our single-core
and multi-core load balancer flow tables.

In Chapter 5, we evaluate the performance of all implementations and compare the
results. Chapter 6 concludes the comparison and provides recommendations.



Chapter 2

Background

2.1 Load balancers
Load balancers (LBs) are devices responsible for distributing incoming network re-
quests over several servers [11]. They allow a distributed system to handle traffic at
a greater scale by ensuring that no server is overloaded leading to its unavailability.
They aim to improve the performance of the different applications by managing the
traffic on the network and making it possible for complex environments to work
smoothly.

Load balancers fall into two categories regarding how they distribute the workflow:
stateless and stateful. While stateless load balancers do not ensure an equal load
distribution, Section 2.1.1, the selection of servers used on stateful load balancers
can achieve a more even workload distribution since it is also based on load metrics,
Section 2.1.2.

By continuously routing the incoming request to the different available servers,
load balancers prevent overworking a specific server and possible bottlenecks
on the network in order to optimize the network’s performance. As previously
mentioned, depending on whether the LB keeps track of the sessions information,
we can consider the following types of load balancers.

2.1.1 Stateless load balancers
Stateless load balancers are simpler, faster, and have a lower computational cost
than stateful ones, but the load distribution can be less accurate depending on the
situation by treating the requests equally. They send the request of a certain user
to the same server, by creating a hash of the user based on the protocol in use,

5



2.1. LOAD BALANCERS 6

in general TCP or UDP; the IP addresses; and the ports of both the source and
destination. Based on this hash function there is no certainty that the distribution
among the users will be done uniformly. This can lead to an unequal load distribu-
tion if the users do not have the same incoming traffic on the network, and so can
overload some of the servers while leaving others relatively idle [45]. On the upper
hand, they do not require retention of the session information, which saves memory.
Figure 2.1 illustrates an example of a stateless load balancer. After receiving a
packet from data, the load balancer retrieve several fields in the IP header of the
packet and apply a hashing algorithm on these extracted values to determine the
receiving server. As a result, the packets are distributed across different servers
regardless of the current state of each server (e.g., traffic load).

Figure 2.1: Stateless load balancer

2.1.2 Stateful load balancers
A stateful load balancer keeps track of each session, routing all packets from one
client to the same machine. The machine will remember the state of that client [33].
These ones can pick different servers by, for example, looking into the current
workload of each server, or into their previous request in order to manage them in
a better way. New packets are assigned to new servers while the ones that already
have an existing connection on the flow table are sent to the already established
server. Thus when a packet arrives at the load balancer, it firstly checks whether
the flow is new or already has a server assigned.

However, by giving better results on distributing the flows on the network, they
require more computational resources and memory. Stateful load balancers need to
calculate the hash of each of the incoming requests and then check if it is a new



2.1. LOAD BALANCERS 7

entry or not, and send it to the assigned server. Each of the searches on the flow
table can lead to a high cost depending on the number of entries.

Figure 2.2 illustrates an example of a stateful load balancer. Upon receiving a
packet, the load balancer utilizes several fields of the IP header, a hashing algorithm,
and other metrics (e.g., server load) as the inputs to determine the representation of
the packets in the flow table. Incorporating external metrics as an input allows for
effective traffic distribution where all three new flows are sent to the server with
the lowest load.

Figure 2.2: Stateful load balancer

Flow tables are commonly implemented using hash tables. Hash tables are data
structures to store a mapping from keys to respective values. They usually provide
efficient algorithms for the lookup of entries. Many different types of hash tables
exist that differ in the storage of the entries and therefore in the algorithms to access
them.

All hash tables store their data in a number of so called buckets. The implementation
of the buckets varies between the different types of hash tables. In general, a single
bucket should only contain a few elements to maintain the efficiency of the lookup
operation. The bucket that an entry should be stored in is determined by a hash
function. The hash function is the main reason for the efficiency of hash tables
because it is only computed once regardless of the size of the table. This function
assigns a number to each key which is then used to select the target bucket. A
good hash function achieves a uniform distribution of the entries over the buckets.
However, even a good hash function can not avoid that multiple entries are mapped
to the same bucket. Such situations are called collisions. Most hash tables include
a mechanism to handle collisions and store all the colliding entries. The collision



2.2. DATA PLANE DEVELOPMENT KIT 8

resolution algorithms often have a severe impact on the performance when the
number of entries approaches the number of buckets.

The flow table of a load balancer uses the identifying five-tuple of a flow (i.e., source
IP address, source port, destination IP address, destination port, and protocol) as
the key and stores the selected backend server and possibly other state information
as the value. For every arriving packet, the load balancer needs to perform a lookup
on the flow table to check if the flow was seen before and a decision on the backend
server was already made. Thus, lookups need to be as fast as possible even with
many entries in the table. The second important operation is the insertion of new
flows into the flow table. This also needs to happen efficiently considering the most
common deployment of load balancers is to distribute the connections from a huge
number of clients to several backend servers. Therefore, special attention needs
to be payed to the efficiency of the lookup and insert operations when choosing a
hash table to implement a flow table.

2.2 Data Plane Development Kit
This project uses Data Plane Development Kit (DPDK) to allow high-speed packet
processing. In the x86 structure, the traditional way of processing data packets is
the CPU interrupt mode, i.e., the network card driver receives the data packet and
informs the CPU to process through an interrupt, and then the CPU copies the data
and delivers it to the protocol stack. However, once the amount of data becomes
huge, this method will generate a large number of CPU interrupts, making the CPU
unable to run other programs [13].

DPDK uses the polling method for implementing the data packet processing. By
reloading the network card driver, it will not interrupt the CPU after receiving the
data packet, but stores the data packet into the memory by zero-copy technique [50],
which maps buffer data to user space straightforwardly without copying in the
kernel space. Meanwhile, the user space program, i.e. FastClick, can read data
packets directly from the memory through the Network Interface Controller (NIC).
Therefore, the stack does not need to receive the packets, and packet counters
increase will not be shown in ifconfig. This processing method saves CPU interrupt
and memory copy time. Moreover, DPDK provides a simple and efficient data
packet processing method for the application layer, making the development of
network applications more convenient.



2.3. FASTCLICK 9

2.3 FastClick
FastClick is a library based on Click, a packet processor offering a simpler config-
uration, integrating Click with Netmap and DPDK [6]. It automatically handles
multi-queuing, core affinity, and batching while keeping the compatibility with
Click. Its integration with DPDK allows it to retrieve and deliver the packets on
its own, without having to do a system call after each of the packet processing.
We are going to use FastClick to implement different load balancers as detailed
in Chapter 5, to scale from single-core to multi-core and taking advantage of its
elements structure to perform different network functions.

Click is a software architecture for creating routers, based on packet processing
modules called elements [32]. In order to configure a Click router, there is a choice
of elements and a connection between them, calling the ends connections and
representing paths for the packet delivery. This flexible and modular software
allows users to create completely new elements or based on the existing ones
by piping them together. Each of the Click elements represents a unit of router
processing, and each action is encapsulated in one.

2.4 Related work
Multiple methods have been developed for flow classification nowadays. Their
approaches differ, which leads to different balances of performance metrics such as
execution time and memory usage. Methods can be distinguished as software-based
or hardware-based, which are discussed separately in the following sections.

2.4.1 Hardware-based flow classification
Conventional hardware-based load balancers [1, 38] mainly make use of Application-
Specific Integrated Circuit (ASIC) and Ternary Content Addressable Memory
(TCAM). In general, although hardware-based classifiers can achieve high speeds
and throughput rates up to 100 MPPS, they cannot be easily developed and cus-
tomized given the limited resources on the chip. Moreover, these systems carry
high costs, and have limitations on scalability, availability, flexibility, and cost-
efficiency [16]. Hence, software-based methods have increased in popularity in
recent years.

2.4.2 Software based flow classification
Compared with hardware-based flow classification, software-based classifiers have
more extensibility. However, they do not perform as efficiently in networks with



2.4. RELATED WORK 10

high bandwidth due to the low speed of the serial processing of instructions in CPUs.
Accelerating the software-based classifiers, therefore, has resulted in considerable
research with the aim of developing methods to increase the speed of its algorithms.
We can roughly divide them into two approaches; decision-trees and hash table
data structures.

2.4.2.1 Decision trees

Decision tree-based algorithms are considered an important class of software-based
classification methods. In this type of classification, the rule sets are stored in the
search tree based on binary patterns in the rule fields. To find the rule that best
matches the incoming packet, the tree is traversed based on the binary content of
the fields in question [35]. Researcher have developed various tree-based algo-
rithms such as AQT [36], HiCuts [30], Hyper-Cuts [46], and Bitcuts [37]. These
algorithms manage to obtain efficient search methods by first using the geometric
representation of rules, and then constructing the corresponding decision tree.
However, existing decision-tree algorithms still have inefficiencies in their space
decomposition schemes, resulting in redundant cutting or degraded classification
speed. Hence, the insertion time for flows costs more, which is extremely relevant
for our use case of flow classification.

2.4.2.2 Hash tables

Most existing load balancing algorithms use hash tables to store connection states
as the data plane solution [44]. In large-scale datacenters, there are tens of thou-
sands of servers and hundreds of load balancers. These stateful load balancers
may experience large memory cost of storing flow states or low capacity of flow
processing. To solve that, some load balancers use digests of connections rather
than full connection state, i.e. five-tuples, to reduce memory cost and improve
throughput, e.g. Google [16] and Microsoft [19]. However, this may result in
violations of flow consistency due to digest collisions. On the other hand, it will
cause frequent data plane updates due to large numbers of new connections.

Concury [44] adopts Othello Hashing [18], which makes use of Bloomier filters, to
alleviate this problem. It is deployed for the large number of network states with
frequent connection arrivals, which performs consistently under infrequent network
updates. Also, the typical data structure that can be used to maintain states in the
above methods is Cuckoo hashing. Cuckoo hashing is an open-addressed hashing
technique with high memory efficiency and O(1) amortized insertion time [34],
which represents the average level of multiple insertions. Hash tables based on open
addressing are those that store all the elements within the table. This is a collision
handling technique where no element is stored outside the limits of the table, and



2.4. RELATED WORK 11

thus the memory usage can be predicted. In the case of collisions, there are different
approaches to compute new positions (e.g Cuckoo and Hopscotch). Multiple
improvements and extensions based on Cuckoo hashing have been developed to
improve performance in practice and for higher load factors. Examples include
MemC3 [18], CUCKOOSWITCH [52], and Cuckoo++ [42],



Chapter 3

Experimental setup

In order to directly compare the flow classification mechanisms in this report,
we collect measurements of the respective execution of FastClick with all of the
mechanisms on a testbed as described in Section 3.1. These measurements come
from two distinct sources.

Firstly, we gather statistics from our traffic generation software that sum up through-
put and latency metrics. This measures the effectiveness of FastClick and the
respective flow classification mechanism; how much traffic it was able to handle
and at which speed it did so. We will repeat the measurements over multiple
iterations in order to build confidence in the results. Section 3.3 describes this
measurement setup.

Secondly, we profile FastClick and the respective flow classification mechanisms
during execution using perf [40]. This allows us to characterize the functions being
called while the load balancer is operational, which will provide insight into the
CPU occupation of FastClick. These measurements will be used to compare the
efficiency of different flow classification mechanisms. Additionally, profiling using
perf allows us to determine to which extent FastClick is the limiting factor for the
traffic flow through the load balancer. Section 3.4 provides more details on the
profiling process.

3.1 Testbed
The setup for measuring the performance of the different flow table implementa-
tions consists of two physical hosts, as we can see in Figure 3.1. Both machines
have one Intel Xeon Gold 5217 processor and 6 x 8 GB memory. They are running

12



3.2. FASTCLICK CONFIGURATION 13

Ubuntu Linux 18.04.1 with kernel version 5.4.0. One host serves as a traffic gener-
ator producing the network traffic needed for the evaluation of the implementations.
The other host is the device under test running the load balancer implementations
in FastClick.

Each host is equipped with a Mellanox ConnectX-5 network interface card (NIC)
with two 100 Gbit/s QSFP28 ports. The hosts are connected with two directly
attached cables using these NICs. The structure of the testbed is shown in Fig-
ure 3.1.

Figure 3.1: Setup of the testbed

3.2 FastClick configuration
As mentioned in earlier chapter, we use FastClick to emulate the load balancer.
The FastClick instance is built on version 1.0.6 with the support for DPDK (version
20.08). FastClick is executed with enabled DPDK support, eight memory lanes,
two network interfaces, and the number of CPU cores depends on the testing
scenario.

Our FastClick configuration is developed based on the modular configuration
technique which includes: (1) common Click configuration files for code reuse,
and (2) one separate configuration file for each load balancing scenario.



3.2. FASTCLICK CONFIGURATION 14

Figure 3.2: Processing flow of stateless load balancer configuration

3.2.1 Stateless load balancer configuration
The stateless load balancer is implemented using the built-in FastClick IPLoad-
Balancer element [5]. Arguments for the IPLoadBalancer element include
the virtual IP address of the load balancer (i.e, the IP that the generator sends
packets to), and the list of IP addresses of the servers to receive traffic (i.e, the
sinks in our topology).

The process flow of FastClick is described in Figure 3.2. After receiving a packet
from the network interface, FastClick validates IP Header field of the packet. Af-
ter that, the packet is passed by the IPLoadBalancer element to rewrite the
destination IP Address field of the packet to a server based on the hash table.
Following this, the checksum of the packet is recalculated before the MAC ad-
dresses are modified by EtherEncap to be sent out of the interface. The reverse
direction follows the same processing flow of the forward direction, with the use
of IPLoadBalancerReverse to rewrite the source IP address of the server to
the virtual IP of the load balancer. In this implementation, we use EtherEncap
with static MAC addresses to bypass the ARP resolution process, which include



3.3. TRAFFIC GENERATION 15

considerable CPU usage during FastClick execution, to analyze the main functions
of FastClick. Regarding checksum calculation, the SetChecksum function would
invoke ResetIPChecksum to offload checksum calculation to the hardware
instead of using the CPU to calculate it.

3.2.2 Stateful load balancer configuration
The hashtable load balancer is implemented using FastClick FlowIPManager
and FlowIPLoadBalancer [3] elements. FlowIPManager is the element
that manages the flow table. Checks whether a packet belongs to an existing flow,
and adds a new entry if it belongs to a new one. The assigned flow is used on
the FlowIPLoadBalancer to do the load balancing and so set its destination
address to the packet. Both these elements were added with the integration of
MiddleClick [7] into FastClick.

The processing flow of this load balancer is similar to the stateless load balancer in
the previous section, aside from the FlowIPLoadBalancer element replacing
IPLoadBalancer to perform the load-balancing task. In the reverse direction
of the packet, FlowIPLoadBalancerReverse [4] is utilized to replace the
source IP address of the server back to the virtual IP of the load balancer. The
detailed processing flow is described in Figure 3.3.

3.3 Traffic generation
The network traffic is generated with TRex [10]. This is an open source traffic
generation software developed by Cisco. It makes use of DPDK to generate
stateless and stateful network traffic at high rates. In stateless mode, TRex generates
configured packets without taking any context into account. In contrast, the
stateful mode allows to generate more complex traffic patterns that replicate stateful
network protocols. It allows, for example, to send packets following a more strict
timing or answer incoming packets with reply packets.

For evaluating the performance of different flow table implementations in a load
balancer, it is not necessary to generate stateful network traffic. Instead, stateless
traffic can be used, which consumes fewer resources on the traffic generator to
reach the same data rates. This is possible because packets flowing through the
load balancer in one direction in a particular order are sufficient to trigger the
interesting flow table operations, i.e., inserts and lookups. The stateful mode would
allow to send replies through the load balancer. But such replies would not trigger
additional operations on the flow table and are thus not necessary.



3.3. TRAFFIC GENERATION 16

Figure 3.3: Processing flow of stateful load balancer configuration



3.3. TRAFFIC GENERATION 17

TRex uses a client-server architecture for generating traffic. The server is imple-
mented in C++ and performs the high-speed generation of packets. The client
configures the packets to be sent and controls the packet generation. It can be
implemented in Python using an API that is provided by TRex.

3.3.1 Stateless traffic generation with TRex
The stateless traffic generation mode of TRex offers sufficient configuration options
with minimal resource consumption.

The configuration of stateless traffic that TRex generates happens by attaching
streams of packets to ports. Ports represent, as with DPDK, the network interfaces
that will be used. A stream has one template for the packets it generates and a
mode for sending them. The mode can be for example continuous, single burst,
or multi burst. Streams can also have a set of modifications that the field engine
applies to the packets and a mode of stream statistics collection.

TRex can either collect no statistics on a stream, basic statistics like packet and
data rate in hardware, or more detailed latency statistics in software. The number
of streams that basic statistics can be collected on are limited by the NICs. The
Mellanox ConnectX-5 in our setup can handle this for up to 127 streams. As the
basic statistics are collected in hardware, the packet rate of the streams does not
matter. Collecting latency statistics also activates the collection of basic statistics
which makes them also count towards the limitations of the NICs. In contrast
to the basic statistics however, the streams with latency statistics should also be
limited in terms of packet rate, because each packet of the stream needs to be
received and handled by a software thread. The TRex documentation recommends
not to exceed five million packets per second combined for all streams with latency
statistics [51].

Multiple streams can be attached to the same port. The streams can be executed in
parallel, but the completion of a stream can also trigger the start of another stream.
This way, streams can be configured that are dependent on each other.

For testing the flow table implementations, we required a testing application that
allows to generate traffic with different packet sizes, produce a configurable number
of flows, collect as detailed statistical data as possible, and can reach data rates up
to 100 Gbit/s. The following sections describe the streams that we use to achieve
the requirements and their integration in our testing application.



3.3. TRAFFIC GENERATION 18

3.3.1.1 TRex stateless stream configuration

The performance of a network device can heavily depend on the size of the packets
it handles. Therefore, the packet size that a stream generates can be adjusted to the
test case by setting a parameter when the stream is created.

Especially with small packets at high data rates, we would exceed the maximum
packet rate for the latency statistics. Therefore, our implementation uses two
streams: one traffic stream and one measurement stream. Both streams generate
the same packets but at different rates. The traffic stream generates packets at
very high rates to reach the aspired data rates while only collecting basic statistics.
In contrast, the measurement stream generates packets at a fixed rate of 10 000
packets per second while collecting detailed latency statistics. This means that the
latency introduced by the load balancer is only measured every 100 µs. The latency
statistics collected from a small subset are only representative for all packets if they
are handled equally by the load balancer. For this assumption to hold, the packets
generated by the two streams should be as similar as possible. Therefore, we do not
base any substantial modifications of the packets on the type of the stream.

However, we need to make sure that the different streams do not influence each
others packet handling. This could, for example, happen when a packet of a
measurement stream belongs to the same flow as earlier packets from a traffic
stream. To ensure that the streams have disjoint sets of flows, they use source
addresses from different IP ranges.

The measurement streams have an initial delay of ten seconds before the first
packet is sent. This allows the traffic stream to reach its desired rate and stabilize
its operation before we start to collect the statistical data for our analysis.

3.3.1.2 Performance issues with the stateless mode

The described configuration shows issues in tests with high data rates as they are
expected for the multi-core implementations. When the data rate of the generated
traffic exceeded 32 Gbps, the measurements show a high variance and a decreasing
throughput with increasing data rates. In this setup, TRex is capable of generating
traffic at the high data rate and the load balancer is able to forward data rates above
this threshold. In addition, when exceeding the data rate limits of the load balancer,
it shows a steady throughput at its maximum capacity with low variance. Therefore,
the issues are most probably a result of TRex not being able to receive traffic at
high rates in stateless mode.

We describe our testing setup based on the stateful mode of TRex in the following
sections.



3.3. TRAFFIC GENERATION 19

3.3.2 Stateful traffic generation with TRex
The core idea of the stateful traffic generation mode is to replay existing traffic
captures. The captures need to be present in the PCAP-format before starting the
traffic generation. The packets in the captures are replayed based on time instead
of the packet order. This means that the next packet from the capture is sent after
a specified amount of time, ignoring whether or not the previous packet from the
capture already arrived. The stateful mode can therefore be used to mimic stateful
traffic without requiring the resources to track stateful connections on client and
server side.

As we have previously described, we do expect to be able to measure all operations
on the flow table with unidirectional traffic. Therefore, we still only generate traffic
in one direction in the stateful mode. In contrast to the stateless mode, we generate
each flow as a burst of packets that are sent quickly after each other. This probably
matches the packet pattern of real connections better than the approach we chose
with the stateless mode.

For our tests, we need to be able to configure the data rate r and the number of new
flows f per second. The generated packets should all have the same size s. The
number of packets to generate per flow, i.e., the packets in the PCAP file, can be
calculated as p f =

r
s f . It can easily be seen that this number is not necessarily a

integer value. We can not generate a fraction of a packet in the end of each flow.
However, we only need to reach the number of packets per flow p f on average over
all flows. Therefore, we generate two PCAP files to replay with a length of

⌊
p f
⌋

and
⌈

p f
⌉

respectively. The two files are replayed a different number of times per
second to achieve p f packets per flow on average over the second. As the content
of the replayed files is dependent on the configuration parameters of our test script,
the files are generated in the setup phase of our script.

All our tests use UDP packets. To create different flows, TRex alters the source IP
address and port of the packets read from the PCAP file. TRex replaces the original
source with an IP address and port from a configurable pool. It with the lowest IP
address and the lowest port and sequentially uses a new IP address until it reaches
the limit of the IP address pool. Then the port number is increased by one and it
starts again from the lowest IP address. By configuring pools of a sufficient size,
we make sure that the flows will never be repeated.

In addition to the traffic from the PCAP files, TRex generates further packets to
measure the latency. We configured these latency measurements to use ICMP
packets and happen 1000 times per second, i.e., every 1 ms. The usage of ICMP
ensures that the latency measurements will always reassemble a new flow, because
the identifying five-tuple of a packet includes the protocol and is therefore different



3.3. TRAFFIC GENERATION 20

for UDP and ICMP packets.

3.3.3 Improvements to TRex
TRex has some deficiencies that affect the analysis of the collected statistical
data. First, all latency statistics are reported in a histogram with buckets arranged
on a logarithmic scale. Therefore, the different buckets cover ranges of latency
measurements of different size. More concretely, this means for example that in
the range from 10 µs to 100 µs, each bucket covers 10 µs, while in the range from
100 µs to 1000 µs, each bucket covers 100 µs. This is a memory-efficient approach
to analyze how many packets show a high latency. However, it is not feasible to
collect an accurate latency distribution and determine the tail latency. Therefore,
we apply patches from Massimo Girondi [20] that modify TRex to build latency
histograms with a linear scale and equally sized buckets. In addition, we decrease
the size of the buckets from 10 µs to 1 µs and set the lower limit of the histogram
to 1 µs. The resulting histograms allow accurate analysis on the full range of the
histogram.

Additionally, the main loop of the TRex server is modified. It is responsible for
executing periodic tasks during the traffic generation, most notably the collection
of statistics. The duration of the periods for the collection process increases
noticeable over the intended 500 ms due to the increased histogram size which
leads to increased execution times of the collection. The reason is that the main
loop sleeps for a fixed amount of time after each execution of the loop. As the
execution of the loop itself takes some time too, especially when collecting the big
histograms, the periods increasingly differ from the intended periods. Therefore,
we modify the main loop to sleep until a specific point in time using clock_-
nanosleep with TIMER_ABSTIME. With these modifications, TRex generates
the statistics at an accurate period of 500 ms.

A similar modification is necessary in the TRex client. The statistical data are
transferred to the client using a serialization in the JSON format. The serialized
data needs to be deserialized at the client, which takes a long time due to the
increased size of the histograms. Similar to the server, the client slept for a fixed
amount of time after fetching one statistics update and its deserializing it. This
leads to a few missed statistic entries over the course of a test run. The issue is
resolved by modifying the client to sleep until a point of time after fetching the
statistics like it is done at the server.



3.4. PROFILING WITH PERF 21

3.3.4 Integration in the testing application
Evaluation process requires the collection of different statistical data with various
parameters (e.g, different data rates, different packet sizes, etc.). In order to
automate the data collection, we developed a bash script to loop through the entire
parameter space. For each parameter combination, we first start FastClick server,
then initiate the traffic generation with TRex, and eventually store the statistical
data into a separate file for later analysis.

3.4 Profiling with perf
Profiling entails observing the running software’s called functions and the propor-
tion of time they occupy the CPU. These data help us to analyze which operations
might form a bottleneck on the performance of the load balancer. We use these
results to tweak configurations for better performance, and to draw conclusions
about the inherent weaknesses or advantages of certain flow classification methods
compared to others.

In this report, we use perf for profiling the performance of LB. We limit its
monitoring scope to the Click process and observe its specific performance. First,
we use the TRex simulation to generate different types of data packets for testing,
and we then run the load balancer. After TRex starts for five seconds, perf is
triggered to record performance metrics for 30 seconds, which eventually generate
an output file containing all measurement data. The 5-seconds delay ensures that
FastClick is in the stable state of processing packets.

In order to understand FastClick performance from the perf output file, we use perf-
class to classify each FastClick function in perf output into one function class that
represents the corresponding load-balancing operation. For instance, the function
rte_hash_lookup of the Cuckoo stateful load balancer is mapped to class
LoadBalancing-Lookup, which represent the flow table lookup operation
of the load balancer. The full list of function mapping is described in table
Table 3.1. The column perf-class regular expression describes the
list of regular expressions used in the perf-class mapping file to classify a function
to a specific class [2].

After parsing the perf output in script format, perf-class produces the number of
CPU cycles for each function class. However, due to the difference of number of
packets each load balancer can process (e.g, stateless load balancer can process
more packets than stateful load balancer), we can not directly use the CPU cycles
to compare different load balancers. Instead, we divide the average CPU cycles
per second of each function class by the average number of packets per second of



3.4. PROFILING WITH PERF 22

the corresponding load balancer and use this result to compare between the load
balancers. For instance, assume that function class LoadBalancing-Lookup
of the Cuckoo hash map load balancer spends 300 CPU cycles/packet, while the
same function class of the stateless load balancer just occupies 150 cycles/packet,
we can conclude that the lookup operation of the Cuckoo hash map load balancer
is less effective than the stateless load balancer because it needs more CPU cycles
to process one packet.



3.4.P
R

O
FIL

IN
G

W
IT

H
P

E
R

F
23

Function class Description perf-class regular expression

IO Input and output operations

mlx5_rx_, mlx5_tx_, schedule,
rxq_burt|rxq_cq,
ToDPDKDevice,
native_write,
pmu_enable,
RouterThread..Driver

NetworkProcessing Functions related to networking process of the packet

Strip, Classifier,
GetIPAddress, EtherEncap,
BatchElement..push_batch,
CheckIPHeader,
ResetIPChecksum

LoadBalancing-Lookup Lookup operation on the flow table
flowtable_lookup,
rte_hash_lookup,
rte_hash_bloom_lookup_data

LoadBalancing-Insert Insert operation on the flow table
flowtable_insert,
rte_hash_bloom_add_key_data,
rte_hash_add_key

LoadBalancing-Process Other minor tasks in FlowIPManager element FlowIPManager

LoadBalancing-Logic
Main logic of the load balancer (i.e, perform modification
of the packet to corresponding server) FlowIPLoadBalancer

LoadBalancing-Concurrency
Lock and unlock operations in multi-core load
balancers using mutex technique

pthread_rwlock_rdlock,
pthread_rwlock_wrlock,
pthread_rwlock_rdunlock,
pthread_rwlock_unlock

Table 3.1: Classification of FastClick functions for perf-class



Chapter 4

Implementation

This chapter aims to provide an overview into the research conducted, in order to
choose the additional flow classification method. It also details the implementations
of the different flow tables using FastClick, for both single-core and multi-core
configurations.

Firstly, Section 4.1.1 presents the different hash tables studied and a brief expla-
nation on each of them. Secondly, Section 4.1.2 compares the previously stated
methods using the specifications we have considered of importance in order to
support our choice.

As previously mentioned in Section 2.1, there are two types of load balancers;
stateless and stateful. We will implement one stateless load balancing method,
described in Section 4.2.1, and multiple methods for stateful load balancers. Ta-
ble 4.1 presents the different implementations for the stateful load balancer part
of this project. For the case of a single-core configuration, we will implement the
default flow table based on Cuckoo hash maps provided by DPDK, described in
Section 4.2.2. We also implement flow tables based on C++’s unordered maps, in
Section 4.2.3, and Hopscotch hash maps, in Section 4.2.4. Finally, we describe the
implementation of Cuckoo++ in Section 4.2.5.

We will additionally scale these implementations to work on multiple cores using
two different techniques. To begin, we leverage shared mutex locks to coordinate
writing and reading by multiple threads to a single flow table, as described in
Section 4.3.1. Then, Section 4.3.2 describes a different approach where all cores
keep track of their own flow table as a way to scale operations.

24



4.1. LITERATURE REVIEW 25

Single-core
Multi-core

Global Lock Per-core duplication

Cuckoo X* X*

C++ unordered map X X X

Hopscotch X X X

Cuckoo++ X X
* This was already implemented in FastClick

Table 4.1: Compared flow table implementations

4.1 Literature Review

4.1.1 Hash tables
As presented in Section 2.4.2.2, we will study different implementations of hash
tables based on flow classification. Consider two prefetching situations. Firstly, in
the pessimistic approach both buckets are prefetched to avoid late lookups. This
is used by DPDK. Secondly, the optimistic situation, in which it is assumed that
the data will be found directly in the primary bucket. This is used in MemC3 and
CUCKOOSWITCH.

The first one implemented is Cuckoo from DPDK in Section 4.2.2, which uses
five-tuple hashing to assign the element to two buckets, primary and secondary.
This way entries only have to be looked up in these two buckets. On new insertions,
previous elements may be relocated to their alternative option.

MemC3 [18] is an extension to Cuckoo, which stands for Memcached with Clock
and Concurrent Cuckoo hashing. MemC3 uses the optimistic Cuckoo approach,
where it is assumed that the key is found on the primary bucket, and so only that one
is prefetched. Another improvement to Cuckoo is the reduction of overhead infor-
mation by using timers, similar to the ones used for Cuckoo++, further explained in
Section 4.2.5. These are used for late deletion, where entries are overwritten when
expired timers are found in the bucket being accessed. Another similar extension
of Cuckoo that uses the optimistic approach is CUCKOOSWITCH [52].

Cuckoo++ [42] is a hash table implementation that differs from Cuckoo by using a
bloom filter that contains all keys that could not be added to the primary bucket,
and so can be found in the secondary one. The main difference can be seen during
lookup, where the key is searched within the filter before having to prefetch the
secondary bucket. Thus reducing the amount of accesses to memory during this
operation. Another difference is the incorporation of an expiration timer with



4.1. LITERATURE REVIEW 26

each entry, used for late deletion. Cuckoo++’s implementation is further described
in Section 4.2.5.

Horton tables [8] are another extension of bucketized Cuckoo hash tables that
distinguish between types A and B of buckets. While type A contains no extra
information, buckets of type B include a remap entry that allows more items to be
hashed with a single function. With this remap array all items that have overflown
are kept track of. Maintaining a worse-case lookup of two buckets and reducing the
majority of negative look-ups to one more bucket access. On the contrary, insertion
is more complex specifically if the primary bucket is full.

Google’s load balancer, Maglev [16], uses the connection tracking table to find
a match, and if it exists then the connection is reused. While otherwise the new
thread checks the consistent hashing module and selects a new server, adding the
entry to the connection table for future packets with the same hashed five-tuple.
When selecting a new server, five-tuple hashing is used and the new selection is
added as a digest (rather than complete state information), which can later cause
false hits.

Concury [44] is a very recent software load balancer that ensures no false hits and
a low memory cost. By using a bloomier filter, it finds the specific destinations for
the different incoming stateful packets and at the same time acts randomly for the
stateless ones.

Hopscotch [31] is an algorithm that defines a neighborhood of size N and keeps the
last location of the hashed key within its neighborhood. The location of that key
can be moved inside that neighborhood to leave space for a more recent insertion
by switching positions. Used in Section 4.2.4.

4.1.2 Comparison of reported performance numbers
The Cuckoo hash table can guarantee lookup in constant time but may require
non-constant insertion time. Hence here, we list the previous different C++ im-
plementations of hash maps, and summarize their performance based on existing
benchmarks and evaluations [21, 42, 44]. Table 4.2 shows a comparison of the
different implementations that we have considered for this literature review.

Cuckoo++ shows a better performance on the benchmarks than both optimistic,
MemC3 and CUCKOOSWITCH, and pessimistic lookups for Cuckoo. It presents
a 50% improvement in lookups when working on a single-core scenario and a 45%
improvement when using 18 cores. To avoid most of the unnecessary accesses to
the secondary bucket there is a less than 0.3% false positive rate with the use of
the blooming filter. This rate indicates when the filter fails to correctly identify



4.1. LITERATURE REVIEW 27

whether the secondary bucket needs to be accessed, and so the secondary bucket is
checked without the need to. It also requires less memory accesses.

Cuckoo++ needs additional metadata to store the bloom filter but has 50% less
memory overhead due to the timers. Since Horton and Cuckoo++ have the same
memory layout, Horton also reduces the memory overhead to 50%, but has a higher
rate for false positives. Thus, Cuckoo++ performs better in these aspects. All the
positive aspects of lookup that Cuckoo offers, worsen with insertion. The cost is
higher, but is less important since lookups tend to take more execution time.

For insertion, Cuckoo++ has a small overhead due to the bloom filter and the timer,
but can be neglected since it is very similar to DPDK’s for large tables. When
comparing Horton with Cuckoo++ [42], no distinction of types is used, and the
tag is placed instead of the bloom filter. Horton has worse performance for all table
sizes and worsens as the load factor increases, since the algorithm for insertion
is more complex when the primary bucket is full. Horton tables also show worse
lookup performance when working with higher load factors.

The multi-core evaluation shows similar results between Cuckoo++ and Horton for
lookups, around 45% better than DPDK’s Cuckoo.

Concury’s memory cost is 20%-30% of Maglev’s memory cost [44]. Compared to
google:dense_hash_map, CUCKOOSWITCH presents worse performance when
working with small tables [52], but overall better than dense_hash_maps for larger
tables and always better than Google’s sparse_hash_map.

The std::unordered_map, (using chaining method) works well in most cases [21],
but is limited by the cache-unfriendliness of chaining. The tsl::hopscotch_map
(using hopscotch hashing) and the tsl::robin_map (using linear robin hood probing)
both are open addressing schemes like Cuckoo hash table, and have similar lookup
speed for lower load factors. However, the former can provide a better compromise
between speed and memory usage on higher load factors (>0.6). The tsl::robin_map
has better insertion performance than Hopscotch. google::dense_hash_map (using
quadratic probing) is not efficient in memory for higher load factors. Additionally,
it performs poorly on lookup misses, just like the emilib::HashMap (using linear
probing).

The tsl::sparse_map (using sparse quadratic probing) offers a good compromise
between lookup time and memory usage, even when working with low load factors,
although with slower speed on insertions. It is faster than both google::sparse_-
hash_map and spp::sparse_hash_map. When using strings as keys, the tsl::array_-
map (using array hash table) offers one of the best lookup speeds on large strings
while having the lowest memory usage. However, its rehash process is slow and
needs spare memory for copying maps. For larger objects, on insertion the values



4.1. LITERATURE REVIEW 28

may have to be moved around either because of the insertion process or because
of rehashing. std::unordered_map and tsl::ordered_map (using linear robin hood
probing with keys-values outside the bucket array) only need to move one element
on deletion, and thus perform better.

In Table 4.2 we summarize the comparison found on different benchmarks and the
papers of the implementations, with every algorithm in a separate row.

Later, Section 4.2.5 details which method we choose to implement and provides
arguments to support this choice.



4.1.L
IT

E
R

A
T

U
R

E
R

E
V

IE
W

29

Name Literature Implementation Insertion time Lookup time Memory efficiency Multi-core

Cuckoo yes [39] = = = =

MemC3 yes [18] higher (than Cuckoo++)

CUCKOOSWITCH yes [52] higher (than Cuckoo++)

Cuckoo++ yes [42] yes [43] = -50% -50% (FPR <0.3%) -45% (18cores)

Horton table yes [8, 42] +15% +5% -50% (FPR <5%) -45% (18cores)

Concury yes [44] yes [47] better better

Maglev yes [16] worse worse

CUCKOOSWITCH yes [52] better for larger tables lower

google::dense_hash_map yes [27] better for smaller tables higher

google::dense_hash_map yes [27] 5th 5th 9th

google::sparse_hash_map yes [27] 9th 9th 1st

tsl::sparse_map yes [26] 7th 6th 3rd

Hopscotch yes [31] yes [23] 3rd 3rd 6th

tsl::robin_map yes [25] 2nd 2nd 8th

spp::sparse_hash_map yes [41] 8th 7th 4th

emilib::HashMap yes [17] 4th 4th 7th

tsl::ordered_map yes [24] 1st 8th 5th

tsl::array_map yes [22] 6th 1st 2nd

Table 4.2: Comparison of hash tables



4.2. SINGLE-CORE LOAD BALANCERS 30

4.2 Single-core load balancers

4.2.1 Round hashing (stateless)
The stateless load balancer is configured using the built-in FastClick IPLoadBal-
ancer element [5]. The parameters of IPLoadBalancer include the virtual IP
address of the load balancer and the list of IP addresses of the servers to handle the
packet. For each incoming packet, IPLoadBalancer chooses one IP address
from the list of servers and replaces the destination IP address field of the packet
with this chosen IP address, thus the packet is forwarded to the corresponding server.
All packets of the same flow will be forwarded to the same server. The FastClick
processing flow of the round hashing is described earlier in Section 3.2.1.

4.2.2 Flow table using Cuckoo
The hash table load balancer is implemented using FastClick FlowIPManager
and FlowIPLoadBalancer [3] elements as described in section Section 3.2.2

The FlowIPManager is the element in charge of the flow tables, where every
incoming packet is evaluated and checked whether it is part of a new flow, or on the
other hand, belongs to an existing one. If the new packet does not have the same
key as one of the existing ones in the table, then a new entry is added to the table
assigning a unique key to the new packet. This element uses the DPDK Cuckoo
hash tables, where it maps each packet to a specific flow.

The FlowIPManager consists of two main functions which we will later modify
to implement new elements using different hash tables. Those functions are run_-
task and process. The first one is in charge of freeing a certain position once a
certain time has passed, and so there are no incoming packets from that specific
flow for some time, leaving space for the assigned server to receive more packets
from different flows. The process function receives a packet and checks whether
that one already exists in the table, by using DPDK’s rte_hash_lookup, the binary
result refers to whether the flow-id of the packet exists on the table or not. If the
packet belongs to a new flow then rte_hash_add_key adds the new flow-id to the
table and checks if there has been an issue introducing the new entry on the table
and resets the timers.

Cuckoo tables use flow classification to map each of the arriving packets to the flow
it belongs to. This table again uses five-tuple hashing based on the fields of source
and destination IP address, protocol, source, and destination port [15].

When given a flow table (array), a new hash is created with the same number of
entries as the flow table. The hash key is set to the same number of bytes as the ones



4.2. SINGLE-CORE LOAD BALANCERS 31

on the flow key. This table is structured such that each entry is identified by a unique
key, and so that all the keys have the same number of bytes as the time the hash
is created. Also, the API contains a method that allows the FlowIPManager to
work with the lookup entries in batches. This way, performance increases and so the
function can work simultaneously with the next entries and with the current entries,
reducing the amount of memory for accessing that is usually required.

The most useful part is that the Cuckoo hash resolves collisions. For any given
key there are two buckets assigned (primary and secondary) to store that key in the
hash table. Figure 4.1a shows an example of the case where one of the buckets is
empty, and so the entry is added successfully (green). While in Figure 4.1b both
buckets are full, and so one of the elements already in place has to be relocated to
their other bucket option (blue), leaving space for the new entry (green). This way
any entry only has to be looked up in two buckets for each lookup request. Thus,
once the corresponding buckets are identified, each action to be made with that key
(e.g., add, lookup) only has to be made within those buckets, reducing the lookup
time.

(a) One of the buckets is empty (b) The two buckets contain entries

Figure 4.1: Cuckoo hashing insertion example [28]

C++’s unordered maps (Section 4.2.3), Hopscotch (Section 4.2.4), and Cuckoo++
(Section 4.2.5) will be the three hash table algorithms implemented based on
FlowIPManager, first for the given case of single-core and later on for multi-
core configurations.

4.2.3 Flow table using C++ unordered maps
C++ unordered maps is a container that has key-value pairs with unique keys for
each of the values and is included in the C++ standard library. This container allows
to search, insert, remove and interact with many more functions with elements



4.2. SINGLE-CORE LOAD BALANCERS 32

from the tables [49]. As the name suggests, there is no particular ordering of these
elements, they are placed depending on the hash of its key. The way of accessing
the elements is then faster because once the hash has been computed it is very easy
to refer to where the element is. The tests in this report use the implementation
from libstdc++ as bundled with GCC 10.1.0.

By replacing all the references to DPDK’s hash table on the previous FlowIP-
Manager element by functions of C++’s unordered maps we create a new element
using a different table. For the new C++’s unordered maps element, we used
emplace in order to insert a new element in the unordered_map and using the
returning two values, the first one being an iterator pointing to the element inserted
and the second one allowing us to see if it is a new flow or not. Then instead of the
ones used by DPDK’s Cuckoo hash tables, we use a faster access table.

To ensure that the size of the flow table does not grow, we reserve a table size and
set a high maximum load factor, which for our current measurements should be
unobtainable.

4.2.4 Flow table using Hopscotch maps
Hopscotch maps is named as such because of the hops that define the table’s
insertion algorithm. It uses a single n array of buckets, where each bucket has a
neighborhood (collection of buckets at H positions) [31] [29]. The neighborhood
size H should always be enough to hold all the items log(n), but if the neighborhood
is filled and there is no option to add the new entry, then the table is resized. Any
given item will always be added or found in the neighbor of its hashed bucket.
When a new element is added, it swaps some of the existing elements in order to
maintain the distance H from the hashed bucket.

For a faster lookup, each bucket includes a bitmap with the information on which
of the next H −1 entries contain an element which was hashed to the actual bucket.
So that when an item is looked up, by checking that information, the algorithm
can directly scan those referenced positions to find where the desired element is,
instead of having to look at all H −1 buckets.

For example, in Figure 4.2 the size of the neighbourhood H is 3. The item ’c’ has
been hashed with value 4, but this position is occupied and the next free spot is in
8. Because position 8 is further than 3 positions from 4, the algorithm will swap
one of the existing ones to another position. In our case, we see that the element
’b’ (found at H − 1) can be moved to the free position at 8 (since it is inside its
neighbor). The new element is then inserted at the previous location of ’b’.

The new FlowIPManagerHopScotch files implement the Hopscotch maps so that



4.2. SINGLE-CORE LOAD BALANCERS 33

Figure 4.2: Hopscotch hashing example [31]

they can be used within our LoadBalancer. Adding the include directory to our
path from [23], we can already use this Hopscotch library which replicates the
behaviours used for C++’s unordered maps implementations with a few modifica-
tions.

The main difference with the previous implementation that we had to address
are some limitations when using iterators. These were solved by, among others,
calling the value function to access the second element on the pair when calling the
function emplace. To prevent the flow table from growing, we use a growth policy
with a high maximum load factor. We replace the existing will_neighborhood_-
change_on_rehash function so that it returns a static value. So when called from
rehash to check if it would be of any benefit to rehash, it returns this value instead
of failing.

Similarly to Section 4.2.3, we set a fixed table size and add a maximum load factor
of 32. We use 32 so that the maximum number of entries does not overflow when
computing table_size∗max_load_ f actor, while still being enough to work with
our measurements.

4.2.5 Flow table using Cuckoo++
Cuckoo++, as previously introduced, is similar to DPDK’s default Cuckoo [15],
previously described in Section 4.2.2, but offers better performance. Given the two
previously introduced prefetching approaches, Cuckoo++ should give better results
than both, especially when the entry is not found in the primary bucket. This is
achieved by reducing the number of memory accesses to the secondary bucket
when a lookup is done and by deleting elements only when an expired entry is
accessed, instead of having to keep timeouts for deletion.

While Cuckoo by default accesses both buckets, this implementation uses a bloom
filter that contains all the keys that could not be added to the main bucket, and so



4.2. SINGLE-CORE LOAD BALANCERS 34

had to be moved to the secondary one. Thus on lookup, the given key is searched in
the bloom filter before accessing the secondary bucket, as can be seen in Figure 4.3
where the shaded slots indicate the accessed memory.

(a) Cuckoo (b) Cuckoo++

Figure 4.3: Memory access during lookup on hash table [42]

A counter is also stored within this filter, which is incremented with each insertion
to the secondary bucket and lowered with deletions for each of the elements stored
in secondary buckets. So when the bloom filter counter reaches zero it is reset.
This can give a few false positives since the key will still be in the filter while the
element may not be there. The first advantage being that the amount of lookups in
memory is reduced.

The second advantage is an attached expiration timer with each entry. Therefore,
instead of deleting an element as soon as it expires, an element is only deleted
when a new entry is inserted into its same slot and its timer has expired.

Cuckoo++ is the implementation that has been chosen after out literature review
in Section 4.1. As just stated, the two main advantages identified that Cuckoo++
offers are reducing the amount of lookups in memory and an expiration timer
associated with each entry. Though the second advantage has not been implemented
since we decided not to work with timers and so to be able to give a fair comparison
later with the other hashing algorithms. In Section 4.1.2 the reasons for this choice
and the other hash tables that were considered are further detailed.

Cuckoo++ can be used in applications similarly as DPDK’s Cuckoo, with some
modifications [42]. The Cuckoo++ library was integrated into the FastClick build
as part of the application itself, instead of a library that is linked later during the
build. All references to previous DPDK’s Cuckoo were replaced by changing some
functions and removing unnecessary parts.



4.3. MULTI-CORE LOAD BALANCERS 35

The functions names were changed by adding bloom to every previous rte_hash
function, as defined on the GitHub repository [43]. Other functions used in other im-
plementations such as rte_hash_count had to be changed by rte_hash_bloom_size
in order to have the same result as the previous ones. Some functions return differ-
ent outputs and expect different inputs than they did with DPDK’s Cuckoo.

For lookup and insertion, the five-tuple hashing was stored in a key of type
hash_key_t that was passed as a parameter. An increasing flow counter was
also created to pass as an offset for insertions, making sure that it would never go
beyond the table dimensions.

4.3 Multi-core load balancers

4.3.1 Shared mutex lock
Global locked flow table using C++’s shared locks uses a lock around the flow
table. This protects the shared data from being accessed simultaneously by multiple
threads. Multiple processing cores should not access the flow table at the same
time in order to maintain integrity guarantees for the data. With this approach, if
one thread has requested access to the flow table, then the other threads are blocked
from accessing it until the first one has finished its operations.

The implementation utilizes C++ shared_mutex for concurrency control [48]. The
shared mutex supports two types of locks: exclusive locks and shared locks. While
only one thread can acquire the exclusive lock at a time, multiple different threads
can acquire the shared lock simultaneously. Therefore, the implementation adopts
shared locks for read access and exclusive locks for write access to the flow
table.

Figure 4.5a describes the processing flow of this implementation. After receiving a
packet, a thread will acquire the shared mutex lock to search the flow table to check
if the packet belong to any existing flows. The shared lock is released as soon as
the lookup operation is finished. In the following step, if there is no existing flow
for the packet, the thread will acquire the exclusive lock to insert the new flow into
the flow table. Eventually, the exclusive lock is released and the processing of the
packet continues. This design allows multiple threads to perform lookup operations
simultaneously as long as there is no thread writing to the flow table.

4.3.2 Duplication of the flow table across cores
Coordinating access to a shared flow table between threads provides significant
overhead. Instead, the duplication approach creates a flow table for every thread,



4.3. MULTI-CORE LOAD BALANCERS 36

which will be exclusively used by that respective thread. For example, when
operating FastClick on four cores, there will also be four flow tables where a core
stores all the flows it sees (Figure 4.5a).

flow table 1

flow table 2

flow table 3

flow table 4

Core 1

Core 2

Core 3

Core 4

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Lookup/Insert

Lookup/Insert

Lookup/Insert

Lookup/Insert

CPU

Packet
generator

Global
flow table

Load balancer

Figure 4.4: Per-core duplication technique in multi-core load balancer

Modern network cards use Receive Side Scaling (RSS) to distribute the incoming
packets to different processor cores. It works similarly to a stateless load balancer
in that it computes a hash for each packet over selected header fields, such as IP
addresses or port numbers. Thereby, it ensures that packets, which belong to the
same flow, are always directed to the same core. This means that a flow will only
be recorded in one of the flow tables, which makes sure that there is only one
selected backend server for each flow. Therefore, all the packets of a flow will still
be routed to the same server.

The implementation uses a pointer variable (global table) to store the list of flow
table objects. Upon initialization, FastClick allocates the size of the global ta-
ble based on the number of running threads which is retrieved from FastClick’s
get_passing_threads function. The total flow table capacity set in the



4.3. MULTI-CORE LOAD BALANCERS 37

load balancer configuration will be equally distributed over all the cores’ flow
tables.

Figure 4.5b describes the processing flow of the per-core duplication technique.
This implementation is similar to the single-core load balancer, with the exception
that each thread reads and writes flow data into their corresponding flow table
instead of shared table. In order to determine which flow table to use, each thread
uses FastClick’s click_current_cpu_id function to get their CPU id and
access the global flow table list at the corresponding position.

To make full use of the independent flow tables per-core, it is necessary to ensure
that no code of any FastClick element affected other cores. In general, the elements
have no state that would require synchronization across cores. However, the
CheckIPHeader element has a counter that is implemented as a atomic_-
uint64_t. This counter is incremented for every processed packet. As the
increment operation is atomic, only one core can perform it at a given time while
other cores, that try to increment the counter, are blocked. While these blocking
periods are very short, they still significantly impact the performance.

Therefore, this counter is removed from the CheckIPHeader element. This is
possible, because the counter is not needed outside the element in our configuration
and it is only used for statistical reasons. Another approach would be to duplicate
such counters per-core as well, but this is beyond the scope of this project.



4.3. MULTI-CORE LOAD BALANCERS 38

Flow table
lookup

Flow
exists?

Flow insertion

Packet
processing

Yes

No

Incoming packet

Acquire
shared lock

Release
shared lock

Acquire 
exclusive lock

Release 
exclusive lock

(a) Mutex lock technique

Get
corressponding

flow table 

Flow
exists?

Flow insertion

Packet
processing

Yes

No

Incoming packet

Get CPU Id

(b) Per-core duplication technique

Figure 4.5: Processing flows of multi-core load balancers



Chapter 5

Evaluation

This chapter presents two main evaluations of the load balancers in this project.
Firstly, we evaluate and compare the two scaling methods — mutex-based scaling
and per-core duplication — based on throughput results. Secondly, we evaluate
and compare the five different hash table implementations based on throughput and
latency results. The chapter begins by establishing the evaluation process.

5.1 Evaluation process
In order to evaluate our load balancer implementations, we measure their per-
formance while sending synthetic network traffic using TRex. The TRex traffic
generation parameter we vary is the data rate of outbound traffic. The values of this
parameter varies depending on the test scenario. Our measurement script initiates
the TRex network traffic with different values from our parameter space. Our
parameter space consists of data rates starting from 10 Gbps up until 100 Gbps,
with steps of 10 Gbps. Additionally, we vary the number of cores with which
FastClick is run between 1, 2, 4, 6, and 8. The number of new flows generated
every second is set to 10,000 and the packet size is set to 1000 bytes. The CPU
frequency of the load balancer is configured to a fixed value of 1300 MHz.

5.2 Scaling methods
The first and most important comparison in this project is between different meth-
ods of scaling flow table operations across multiple cores. Figure 5.1 shows the
achieved throughput of all scaling methods applied to all hash table implementa-
tions for different numbers of assigned CPU cores.

39



5.2. SCALING METHODS 40

1 2 4 6 8
Number of Cores

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

20
.2

27
.1

22
.5

21
.1

20
.4

20
.8

25
.7

22
.4

19
.9

20
.021

.4

44
.3

88
.3

98
.0

98
.0

22
.8

47
.5

94
.6 98

.0

98
.0

22
.1

44
.3

88
.3

98
.0

98
.0

18
.1

36
.3

69
.0

98
.0

98
.0

Throughput vs Number of cores
C++ unordered map  mutex
Hopscotch  mutex
C++ unordered map  per-core duplication
Hopscotch  per-core duplication
Cuckoo  per-core duplication
Cuckoo++  per-core duplication

Figure 5.1: Throughput over different number of cores with error bars for multi-
core load balancers after 5 samples, Data rate=100 Gbps

The main observation from Figure 5.1 is that mutex-based scaling performs worst.
Doubling the number of cores from one to two achieves an improvement in through-
put between 23% and 35%, but increasing the number of cores further leads to a
decrease in throughput again. This performance plateau is explained by the over-
head from operations related to concurrency. The mutex-based method exclusively
locks the flow table when one core is performing insert operations on it, such that
none of the other cores can access it at that time. This means that during such
times, in multi-core situations, most of the cores (e.g, n− 1 cores if FastClick
runs with n cores) are waiting for their turn to perform any operations on the
flow table, including lookups. This is the factor that slows down the mutex-based
implementations, which Figure 5.2 clearly shows with the increase in computation
cycles spent in concurrency related operations as the number of cores goes from
two, to four, to eight.



5.2. SCALING METHODS 41

IO

Lo
ad

Ba
lan

cin
g-

Co
nc

ur
re

nc
y

Lo
ad

Ba
lan

cin
g-

Lo
ok

up

Lo
ad

Ba
lan

cin
g-

Ins
er

t

Lo
ad

Ba
lan

cin
g-

Pr
oc

es
s

Lo
ad

Ba
lan

cin
g-

Lo
gic

Ne
tw

or
kP

ro
ce

ss
ing

Function class

0

250

500

750

1000

1250

1500

1750

CP
U 

cy
cle

s/
pa

ck
et

16
5.

2

21
5.

7

26
.0

0.
4 79

.0

18
.5

15
8.

122
7.

4

71
5.

1

13
.5

0.
6

23
4.

4

17
.6

23
2.

832
2.

8

17
00

.8

20
.4

0.
6

57
2.

3

18
.2

33
7.

8

Perf profiling result for Hopscotch  mutex
2 cores
4 cores
8 cores

Figure 5.2: Perf profiling result of multi-core Hopscotch using mutex lock

Figure 5.3 also shows that mutex-based scaling leads to a high latency. While
minor differences based on the hash table implementation can be observed, the
latency appears to be dominated by the mutex-based scaling. This can as well be
explained with the long periods where the cores are blocked and can not process
further packets.

In contrast to the mutex-based method of scaling, the per-core duplication approach
shows a linear relation between throughput performance and number of cores
for all hash table implementations. With the results for Hopscotch – per-core
duplication as an example, we observe performance improvements of 108% and
99% for doubling of the number of cores, from one to two, and from two to four,
respectively. After going beyond four cores, the load balancers saturate the full
link capacity, as can be seen for six and eight cores, where all hash tables using the
per-core duplication method consistently achieve 98 Gbps of throughput.



5.3. HASH TABLE PERFORMANCE 42

0.0 0.9 0.99 0.999 Max
Quartile of packets

0

1000

2000

3000

4000

5000

La
te

nc
y 

(m
icr

os
ec

on
ds

)

Latency at load factor 0.65
C++ unordered map  mutex
C++ unordered map  per-core duplication
Hopscotch  mutex
Hopscotch  per-core duplication
Cuckoo  per-core duplication
Cuckoo++  per-core duplication

0.0 0.9 0.99 0.999 Max
Quartile of packets

0

1000

2000

3000

4000

5000

La
te

nc
y 

(m
icr

os
ec

on
ds

)

Latency at load factor 0.95
C++ unordered map  mutex
C++ unordered map  per-core duplication
Hopscotch  mutex
Hopscotch  per-core duplication
Cuckoo  per-core duplication
Cuckoo++  per-core duplication

Figure 5.3: Latency comparison of different multi-core implementations at flow
table load factors of 65% and 95%; based on 10,000 latency measurements; number
of cores=4

We additionally expected the relative performance between C++ unordered map,
Hopscotch, Cuckoo, and Cuckoo++ to remain stable. This hypothesis is confirmed
by the data shown in Figure 5.1. Hopscotch consistently performs best in terms of
throughput, followed by Cuckoo, C++ unordered map, and Cuckoo++. This order
also holds for the latency of the majority of packets as can be seen in Figure 5.3.
The significant performance difference between Cuckoo++ and the other hash
tables is unexpected, and this will be further explored in Section 5.3.

In conclusion, the per-core duplication approach to scaling hash tables across
multiple cores significantly outperforms the mutex-based approach. Using per-core
duplication, the throughput performance improves linearly with the increase in
number of cores. Mutex-based scaling reaches a performance plateau after which
additional cores only cause decreased throughput.

5.3 Hash table performance
The second comparison is between the specific hash tables used to implement the
flow tables. This section presents our test results and compares all hash tables and
scaling methods based on the observed performance.



5.3. HASH TABLE PERFORMANCE 43

0 20 40 60 80 100 120
Flow table load factor (%)

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput vs. Flow table load factor
Number of cores: 1

Stateless
Cuckoo
C++ unordered map
Hopscotch
Cuckoo++

Figure 5.4: Throughput over increasing flow table load factor for single-core load
balancer implementations after 5 samples, data rate=100 Gbps

Load balancers running on a single CPU core are the baseline of this comparison.
Figure 5.4 shows the throughput for every hash table implementation over different
flow table load factors. The stateless load balancer achieves a throughput rate
more than 60% higher than the stateful implementations. This stems from the
fundamental difference between these two load balancing approaches, namely that
the stateful load balancers have the additional overhead of maintaining flow tables.
Profiling the execution of all hash tables confirms this. Figure 5.5 clearly shows
that the stateless load balancer spends zero CPU cycles on lookups, insertions, and
processing, precisely because it does not maintain a flow table.

In Figure 5.4, it becomes clear that the Hopscotch hash table achieves the highest
throughput up until a load factor of 70%, after which it decreases past the more
stable Cuckoo hash table. The behavior of Cuckoo-based hash tables past a load
factor of 100% is further explained in the following evaluation for the multi-core
performance of all hash tables. The decreased performance of Hopscotch can



5.3. HASH TABLE PERFORMANCE 44

also be observed from the latency statistics. While the curve in the first graph in
Figure 5.3 is below the other methods, it is shifted upwards to the same level as the
other methods at a high load factor in the second graph.

IO

Lo
ad

Ba
lan

cin
g-

Lo
ok

up

Lo
ad

Ba
lan

cin
g-

Ins
er

t

Lo
ad

Ba
lan

cin
g-

Pr
oc

es
s

Lo
ad

Ba
lan

cin
g-

Lo
gic

Ne
tw

or
kP

ro
ce

ss
ing

Function class

0

25

50

75

100

125

150

175

200

CP
U 

cy
cle

s/
pa

ck
et 11

9.
8

0.
0

0.
0

0.
0

20
.3

65
.8

16
4.

7

78
.5

0.
3

30
.3

25
.1

12
6.

8

16
0.

7

10
8.

2

1.
0

35
.2

19
.3

11
9.

8

16
1.

0

69
.5

1.
2

38
.3

18
.9

11
9.

3

16
3.

2

18
5.

9

0.
9

31
.7

18
.3

11
9.

5

Perf profiling result for single-core load balancers
Stateless
Cuckoo
C++ unordered map
Hopscotch
Cuckoo++

Figure 5.5: Perf profiling result for single-core load balancers, Data rate = 100 Gbps,
each flow consists of 1250 packets of which only the first one triggers an insert
operation

In Figure 5.6, the four graphs describe the achieved throughput for an increasing
flow table load factor for different CPU core configurations. The horizontal axes
continue until a load factor of 120%, because the tests were set up such as to
observe how each hash table handles an overflow of the configured capacity and
how it impacts performance. Figure 5.7 shows the achieved throughput against
the data rate at which traffic was generated and sent to the load balancers. The
following paragraphs provide details on several interesting conclusions that can be



5.3. HASH TABLE PERFORMANCE 45

drawn from these graphs.

Firstly, these graphs again confirm that the mutex-based approach to scaling across
multiple cores impacts the throughput performance negatively, compared to the per-
core duplication method. Irrespective of the flow table load factor, C++ unordered
map and Hopscotch with mutex-based scaling consistently achieve throughput
rates not higher than 27 Gbps.

In general, throughput performance of all implementations is stable throughout
most flow table load factors. However, performance starts to change near a 100%
load factor and beyond. Cuckoo-based hash tables show decreasing throughput
after reaching a load factor of 100%. This is because these hash tables do not offer
any overflow mechanism. Instead, they fail insertion and the load balancer then
decides to drop the packet. In contrast, C++ unordered map and Hopscotch do
provide a mechanism to store additional entries, albeit with worse performance.
As the number of cores increases, the load factor at which Cuckoo-based hash
tables start dropping in performance becomes lower, and with four and eight cores
they even achieve some throughput at a load factor of 110%. Considering that
there is no overflow mechanism, the latter observation is unexpected. However,
we hypothesize that this behavior is caused by the manner in which the network
card forwards network packets to the assigned cores. The network card distributes
packets across cores by using a hashing algorithm. Depending on the hash functions
that are used, this means each flow table might no longer produce a uniform
distribution when applying its hash function on the entries to insert. In turn, this
causes some cores and thus their flow tables to fill up quicker than others. When a
flow table on one core is filled up, the Cuckoo-based methods will start refusing
new insertions, causing the earlier drop in performance before the 100% load factor
over all cores is reached. Similarly, it then also follows that other cores have space
left for insertions, which causes the small amount of throughput in the tail of the
graph.

The per-core duplicated Hopscotch implementation shows stable performance
in all cases, but exhibits a slight decrease in throughput as the flow table load
factor increases. The reason for this has to do with how Hopscotch works. As
described in Section 4.2.4, Hopscotch performs swapping operations to maintain
its neighborhoods. For higher load factors, Hopscotch will have to perform more
swapping operations. These additional operations cause a drop in insertion speed,
and thus a drop in achieved throughput. In general however, Hopscotch performs
the best out of all the tested hash tables. A distinguishing feature of Hopscotch
hash tables is their cache locality. This causes Hopscotch to require significantly
less CPU cycles for hash table lookups, which Figure 5.5 confirms.

Cuckoo++ performs worst in our experiment, which is in contrast with the result



5.3. HASH TABLE PERFORMANCE 46

from research of the author, where it is more efficient than the default Cuckoo
implementation in DPDK [42]. In order to investigate the cause of the performance
difference, we investigated the profiling results of Cuckoo++. However, these
did not reveal any obvious performance issues at the code level. The possible
explanation for this includes: (1) the original research was conducted on DPDK
17.05, while our testbed is using DPDK 20.08, which may include additional
optimizations for the default Cuckoo hash table that Cuckoo++ has not supported;
(2) our use case is different from the use case of the original paper: while the
original paper compares the two algorithms with data being stored on the table, our
use case stores data outside of the table in a separate memory area; (3) Cuckoo++
is designed for very large hash tables that exceed cache sizes by trying to avoid
memory accesses that would trigger cache misses. However, our hash tables
does not reach this threshold and therefore there are not many cache misses that
Cuckoo++ could avoid. We confirmed this hypothesis by using perf to record and
compare the number of cache misses between Cuckoo and Cuckoo++ when they
process data at 100 Gbps over a period of thirty seconds with the CPU frequency
of 1300 Mhz. The perf output showed that Cuckoo++ has 65,000 cache misses,
which is higher than Cuckoo at 60,000 events. As Cuckoo++ can not avoid cache
misses in our test, the additional computation needed for the avoidance does only
slow down the hash table lookups. Cuckoo is faster in our setting because it
performs less operations for each lookup. While this applies to our test setting, the
performance could be different if the flow table exceeds cache size according to the
original research of Cuckoo++, where it benefits from the cache miss avoidance in
comparison to Cuckoo.



5.3. HASH TABLE PERFORMANCE 47

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Number of cores: 1 Number of cores: 2

0 20 40 60 80 100 120
Flow table load factor (%)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Number of cores: 4

0 20 40 60 80 100 120
Flow table load factor (%)

Number of cores: 8

Throughput vs. Flow table load factor

C++ unordered map  mutex
Hopscotch  mutex
C++ unordered map  per-core duplication

Hopscotch  per-core duplication
Cuckoo  per-core duplication
Cuckoo++  per-core duplication

Figure 5.6: Throughput over increasing percentage of flow table usage for multi-
core implementations after 5 samples, Data rate=100 Gbps



5.3. HASH TABLE PERFORMANCE 48

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

C++ unordered map  mutex
1 Core
2 Cores
4 Cores
8 Cores

C++ unordered map  per-core duplication
1 Core
2 Cores
4 Cores
8 Cores

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Hopscotch  mutex
1 Core
2 Cores
4 Cores
8 Cores

Hopscotch  per-core duplication
1 Core
2 Cores
4 Cores
8 Cores

0 20 40 60 80 100
Data rate (Gbps)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Cuckoo  per-core duplication
1 Core
2 Cores
4 Cores
8 Cores

0 20 40 60 80 100
Data rate (Gbps)

Cuckoo++  per-core duplication
1 Core
2 Cores
4 Cores
8 Cores

Throughput vs. Data rate

Figure 5.7: Throughput over different data rates and different number of cores for
multi-core load balancer implementations



Chapter 6

Conclusion

The most important result from this project is the clear performance difference
between the flow table scaling methods. The measurements and evaluation showed
that the per-core duplication method outperforms the mutex-based method, irre-
spective of the specific hash table that is being used. Load balancers using the
per-core duplication method of scaling, were observed to scale linearly in through-
put performance as the number of cores increased. This contrasts with mutex-based
scaling, where load balancers reached a performance plateau and subsequently
were observed to decrease in throughput performance with the addition of CPU
cores. In any case where the operation of flow tables is required to scale to multiple
cores, we thus recommend to use the per-core duplication method.

This project additionally compared several hash table implementations, includ-
ing Cuckoo, C++ unordered map, Hopscotch, and Cuckoo++. Our results and
evaluation showed that the differences between hash tables are less clear than the
observed distinction between scaling methods.

In general, Hopscotch was shown to perform best across all our test cases. At higher
load factors, Hopscotch’s performance decreases slightly, but not as drastically as
Cuckoo-based hash tables.

Unexpectedly, Cuckoo++ did not perform better than Cuckoo during our measure-
ments. Its achieved throughput was mostly lower than the throughput achieved
by Cuckoo. Our profiling revealed that Cuckoo++ spends significantly more
CPU cycles on lookup operations. This performance difference is partially ex-
plained by the relatively small, configured capacity of the hash tables we used.
Cuckoo++’s authors note that the method becomes more efficient for much larger
tables. Our project insufficiently tested this. However, we recommend that enter-
prises with relatively small tables, serving a few hundred thousand clients, do not

49



6.1. FUTURE WORK 50

use Cuckoo++ with their load balancers, based on the results we observed in our
measurements.

Because the performance differences between hash tables were observed to be
marginal, potential future users should also take other features into consideration.
An advantage of the Cuckoo++ implementation are its built-in timers and expiration
mechanisms. DPDK’s implementation of Cuckoo includes lock-free operations,
that can be used to maintain a shared state for other purposes across cores.

Depending on specific usage scenarios of a load balancer, there are more factors to
include in a comparison such as the one conducted in this project. For example, with
specific numbers for the amount of flows per second to support, the measurement
setup as described in this report can be used to accurately test performance of all
hash tables in the respective scenario. This project thus contributes by not only
providing a general comparison of hash tables and scaling methods, but also by
enabling future comparisons to take place for more specific usage scenarios.

6.1 Future work
There are several direct ways to take the work from this project further. Firstly,
DPDK 18.11 introduced extendable buckets, which provides an overflow mecha-
nism for Cuckoo. Performing all the tests again with an updated DPDK installation,
is thus expected to produce better results for the default Cuckoo hash table. The
release notes mention a 100% insertion success [14].

Secondly, it became apparent that we have not tested Cuckoo++ with hash table
capacities at which it was designed to perform better. In future work, including
those cases in the measurements might result in Cuckoo++ proving itself more
effective.

Lastly, we have not considered memory efficiency of any of these hash tables
during the project. Future work can include this metric in the comparison, which
might shift the final relative results.



References

[1] A10 Networks, Inc. Application Delivery and Load Balancing: Thunder
ADC | A10 Networks. URL: https://www.a10networks.com/
products/thunder-adc/ (visited on Jan. 5, 2021).

[2] Tom Barbette. {tbarbette/Perf-Class}: Python Parser for Linux Perf Pro-
filer to Group Symbols into Classes. URL: https://github.com/
tbarbette/perf-class (visited on Jan. 2, 2021).

[3] Tom Barbette. FlowIPLoadBalancer Element Documentation. May 7, 2020.
URL: https://github.com/tbarbette/fastclick/wiki/
FlowIPLoadBalancer (visited on Oct. 5, 2020).

[4] Tom Barbette. FlowIPLoadBalancerReverse Element Documentation. May 7,
2020. URL: https://github.com/tbarbette/fastclick/
wiki/FlowIPLoadBalancerReverse (visited on Oct. 5, 2020).

[5] Tom Barbette. IPLoadBalancer Element Documentation. May 7, 2020.
URL: https://github.com/tbarbette/fastclick/wiki/
IPLoadBalancer (visited on Oct. 5, 2020).

[6] Tom Barbette, Cyril Soldani, and Laurent Mathy. “Fast Userspace Packet
Processing”. In: 2015 ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems (ANCS). 2015 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS).
Oakland, CA, USA: IEEE, May 2015, pp. 5–16. ISBN: 978-1-4673-6633-5.
DOI: 10.1109/ANCS.2015.7110116.

[7] Tom Barbette et al. “A Low-Level Dive into Building a High-Speed NFV
Dataplane for Service Chaining”. In: (Apr. 24, 2018), p. 2.

[8] Alex D. Breslow et al. “Horton Tables: Fast Hash Tables for in-Memory
Data-Intensive Computing”. In: 2016 USENIX Annual Technical Conference
(USENIX ATC 16). Denver, CO: USENIX Association, June 2016, pp. 281–
294. ISBN: 978-1-931971-30-0. URL: https://www.usenix.org/

51

https://www.a10networks.com/products/thunder-adc/
https://www.a10networks.com/products/thunder-adc/
https://github.com/tbarbette/perf-class
https://github.com/tbarbette/perf-class
https://github.com/tbarbette/fastclick/wiki/FlowIPLoadBalancer
https://github.com/tbarbette/fastclick/wiki/FlowIPLoadBalancer
https://github.com/tbarbette/fastclick/wiki/FlowIPLoadBalancerReverse
https://github.com/tbarbette/fastclick/wiki/FlowIPLoadBalancerReverse
https://github.com/tbarbette/fastclick/wiki/IPLoadBalancer
https://github.com/tbarbette/fastclick/wiki/IPLoadBalancer
https://doi.org/10.1109/ANCS.2015.7110116
https://www.usenix.org/conference/atc16/technical-sessions/presentation/breslow
https://www.usenix.org/conference/atc16/technical-sessions/presentation/breslow


REFERENCES 52

conference/atc16/technical-sessions/presentation/
breslow.

[9] Cisco. Cisco Annual Internet Report (2018–2023). 2020. URL: https:
//www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-
paper-c11-741490.pdf.

[10] Cisco. TRex - Realistic Traffic Generator. URL: https://trex-tgn.
cisco.com/ (visited on Oct. 3, 2020).

[11] Citrix. What Is a Load Balancer? Citrix.com. URL: https://www.
citrix.com/glossary/load- balancing.html (visited on
Oct. 6, 2020).

[12] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data Center Energy
Consumption Modeling: A Survey”. In: IEEE Communications Surveys
& Tutorials 18.1 (Jan. 27, 2016), pp. 732–794. ISSN: 1553-877X. DOI:
10.1109/COMST.2015.2481183.

[13] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ramanathan. “HIP:
Hybrid Interrupt-Polling for the Network Interface”. In: ACM SIGOPS
Operating Systems Review 35.4 (Oct. 2001), pp. 50–60. ISSN: 0163-5980.
DOI: 10.1145/506084.506089.

[14] DPDK Developers. DPDK Release 18.11 - Release Notes. URL: https:
//doc.dpdk.org/guides-18.11/rel_notes/release_18_
11.html (visited on Jan. 6, 2021).

[15] DPDK: Hash Library. URL: https://doc.dpdk.org/guides/
prog_guide/hash_lib.html (visited on Oct. 14, 2020).

[16] Daniel E. Eisenbud et al. “Maglev: A Fast and Reliable Software Net-
work Load Balancer”. In: 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16). USENIX Association, Mar.
2016, pp. 523–535. ISBN: 978-1-931971-29-4. URL: https://www.
usenix.org/conference/nsdi16/technical-sessions/
presentation/eisenbud.

[17] Emil Ernerfeldt. Emilk/Emilib: Loose Collection of Misc C++ Libs. URL:
https://github.com/emilk/emilib (visited on Nov. 23, 2020).

[18] Bin Fan, David G. Andersen, and Michael Kaminsky. “MemC3: Compact
and Concurrent MemCache with Dumber Caching and Smarter Hashing”.
In: 10th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 13). Lombard, IL: USENIX Association, Apr. 2013, pp. 371–
384. ISBN: 978-1-931971-00-3. URL: https://www.usenix.org/

https://www.usenix.org/conference/atc16/technical-sessions/presentation/breslow
https://www.usenix.org/conference/atc16/technical-sessions/presentation/breslow
https://www.usenix.org/conference/atc16/technical-sessions/presentation/breslow
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://www.citrix.com/glossary/load-balancing.html
https://www.citrix.com/glossary/load-balancing.html
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1145/506084.506089
https://doc.dpdk.org/guides-18.11/rel_notes/release_18_11.html
https://doc.dpdk.org/guides-18.11/rel_notes/release_18_11.html
https://doc.dpdk.org/guides-18.11/rel_notes/release_18_11.html
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://github.com/emilk/emilib
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan


REFERENCES 53

conference/nsdi13/technical-sessions/presentation/
fan.

[19] Rohan Gandhi et al. “Duet: Cloud Scale Load Balancing with Hardware and
Software”. In: Proceedings of the 2014 ACM Conference on SIGCOMM.
SIGCOMM ’14. Association for Computing Machinery, 2014, pp. 27–38.
ISBN: 978-1-4503-2836-4. DOI: 10.1145/2619239.2626317.

[20] Massimo Girondi. TRex Patches for Linear Latency Histograms. Nov. 2019.
URL: https://github.com/MassimoGirondi/trex-core/
compare/cf462ff77defbab902eed80f30050214b398dc5f...
9801e5b6850dd5692eaf1e79d26b36c0c6068ba6.patch (vis-
ited on Jan. 5, 2021).

[21] Thibaut Goetghebuer. Benchmark of Several Hash Maps. URL: https://
tessil.github.io/other/hash_table_benchmark.html
(visited on Nov. 19, 2020).

[22] Thibaut Goetghebuer. Tessil/Array-Hash: C++ Implementation of a Fast
and Memory Efficient Hash Map and Hash Set Specialized for Strings. URL:
https://github.com/Tessil/array-hash (visited on Nov. 18,
2020).

[23] Thibaut Goetghebuer. Tessil/Hopscotch-Map: C++ Implementation of a
Fast Hash Map and Hash Set Using Hopscotch Hashing. Oct. 26, 2020.
URL: https://github.com/Tessil/hopscotch-map (visited
on Oct. 23, 2020).

[24] Thibaut Goetghebuer. Tessil/Ordered-Map: C++ Hash Map and Hash Set
Which Preserve the Order of Insertion. URL: https://github.com/
Tessil/ordered-map (visited on Nov. 18, 2020).

[25] Thibaut Goetghebuer. Tessil/Robin-Map: C++ Implementation of a Fast
Hash Map and Hash Set Using Robin Hood Hashing. URL: https://
github.com/Tessil/robin-map (visited on Nov. 18, 2020).

[26] Thibaut Goetghebuer. Tessil/Sparse-Map: C++ Implementation of a Mem-
ory Efficient Hash Map and Hash Set. URL: https://github.com/
Tessil/sparse-map (visited on Nov. 18, 2020).

[27] Google. Sparsehash/Sparsehash: C++ Associative Containers. URL: https:
//github.com/sparsehash/sparsehash (visited on Nov. 23,
2020).

[28] Emmanuel Goossaert. Cuckoo Hashing. July 20, 2013. URL: http://
codecapsule.com/2013/07/20/cuckoo-hashing/ (visited on
Nov. 29, 2020).

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://doi.org/10.1145/2619239.2626317
https://github.com/MassimoGirondi/trex-core/compare/cf462ff77defbab902eed80f30050214b398dc5f...9801e5b6850dd5692eaf1e79d26b36c0c6068ba6.patch
https://github.com/MassimoGirondi/trex-core/compare/cf462ff77defbab902eed80f30050214b398dc5f...9801e5b6850dd5692eaf1e79d26b36c0c6068ba6.patch
https://github.com/MassimoGirondi/trex-core/compare/cf462ff77defbab902eed80f30050214b398dc5f...9801e5b6850dd5692eaf1e79d26b36c0c6068ba6.patch
https://tessil.github.io/other/hash_table_benchmark.html
https://tessil.github.io/other/hash_table_benchmark.html
https://github.com/Tessil/array-hash
https://github.com/Tessil/hopscotch-map
https://github.com/Tessil/ordered-map
https://github.com/Tessil/ordered-map
https://github.com/Tessil/robin-map
https://github.com/Tessil/robin-map
https://github.com/Tessil/sparse-map
https://github.com/Tessil/sparse-map
https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
http://codecapsule.com/2013/07/20/cuckoo-hashing/
http://codecapsule.com/2013/07/20/cuckoo-hashing/


REFERENCES 54

[29] Emmanuel Goossaert. Hopscotch Hashing. Code Capsule. Aug. 11, 2013.
URL: http://codecapsule.com/2013/08/11/hopscotch-
hashing/ (visited on Nov. 2, 2020).

[30] Pankaj Gupta and Nick McKeown. “Packet Classification Using Hierarchical
Intelligent Cuttings”. In: Proc. Hot Interconnects VII (Aug. 1999).

[31] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. “Hopscotch Hashing”. In:
Distributed Computing. Ed. by Gadi Taubenfeld. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 350–364.
ISBN: 978-3-540-87779-0. DOI: 10.1007/978-3-540-87779-0_24.

[32] Eddie Kohler et al. “The Click Modular Router”. In: ACM Transactions
on Computer Systems 18.3 (Aug. 2000), pp. 263–297. ISSN: 0734-2071,
1557-7333. DOI: 10.1145/354871.354874.

[33] P Ramakanth Kumar and N Deepamala. “Design for Implementing Net-
Flow Using Existing Session Tables in Devices like Stateful Inspection
Firewalls and Load Balancers”. In: Trendz in Information Sciences & Com-
puting(TISC2010). Computing (TISC). Chennai, India: IEEE, Dec. 2010,
pp. 210–213. ISBN: 978-1-4244-9007-3. DOI: 10.1109/TISC.2010.
5714641.

[34] Xiaozhou Li et al. “Algorithmic Improvements for Fast Concurrent Cuckoo
Hashing”. In: Proceedings of the Ninth European Conference on Com-
puter Systems. EuroSys ’14. Amsterdam, The Netherlands: Association for
Computing Machinery, 2014. ISBN: 978-1-4503-2704-6. DOI: 10.1145/
2592798.2592820.

[35] H. Lim et al. “A Quad-Trie Conditionally Merged with a Decision Tree for
Packet Classification”. In: IEEE Communications Letters 18.4 (Apr. 2014),
pp. 676–679. ISSN: 1558-2558. DOI: 10.1109/LCOMM.2014.013114.
132384.

[36] Hyesook Lim, Min Young Kang, and Changhoon Yim. “Two-Dimensional
Packet Classification Algorithm Using a Quad-Tree”. In: Computer Commu-
nications 30.6 (2007), pp. 1396–1405. ISSN: 0140-3664. DOI: 10.1016/
j.comcom.2007.01.004.

[37] Zhi Liu et al. “BitCuts: A Fast Packet Classification Algorithm Using Bit-
Level Cutting”. In: Computer Communications 109 (Sept. 2017), pp. 38–52.
ISSN: 01403664. DOI: 10.1016/j.comcom.2017.05.001.

[38] Loadbalancer.org. Hardware Load Balancer. URL: https://www.loadbalancer.
org/products/hardware/ (visited on Jan. 5, 2021).

http://codecapsule.com/2013/08/11/hopscotch-hashing/
http://codecapsule.com/2013/08/11/hopscotch-hashing/
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1145/354871.354874
https://doi.org/10.1109/TISC.2010.5714641
https://doi.org/10.1109/TISC.2010.5714641
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1109/LCOMM.2014.013114.132384
https://doi.org/10.1109/LCOMM.2014.013114.132384
https://doi.org/10.1016/j.comcom.2007.01.004
https://doi.org/10.1016/j.comcom.2007.01.004
https://doi.org/10.1016/j.comcom.2017.05.001
https://www.loadbalancer.org/products/hardware/
https://www.loadbalancer.org/products/hardware/


REFERENCES 55

[39] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo Hashing”. In: Journal
of Algorithms 51.2 (May 2004), pp. 122–144. ISSN: 01966774. DOI: 10.
1016/j.jalgor.2003.12.002.

[40] Perf: Linux Profiling with Performance Counters. URL: https://perf.
wiki.kernel.org/index.php/Main_Page (visited on Oct. 5,
2020).

[41] Gregory Popovitch. Greg7mdp/Sparsepp: A Fast, Memory Efficient Hash
Map for C++. URL: https://github.com/greg7mdp/sparsepp
(visited on Nov. 23, 2020).

[42] Nicolas Le Scouarnec. “Cuckoo++ Hash Tables: High-Performance Hash
Tables for Networking Applications”. In: Proceedings of the 2018 Sympo-
sium on Architectures for Networking and Communications Systems. ANCS
’18. Association for Computing Machinery, 2018, pp. 41–54. ISBN: 978-1-
4503-5902-3. DOI: 10.1145/3230718.3232629.

[43] Nicolas Le Scouarnec. Technicolor-Research/Cuckoopp: A High-Performance
Hash-Table for Network Packet-Processing Applications (Compatible with
DPDK). URL: https://github.com/technicolor-research/
cuckoopp (visited on Nov. 17, 2020).

[44] Shouqian Shi et al. “Concury: A Fast and Light-Weight Software Cloud
Load Balancer”. In: Proceedings of the 11th ACM Symposium on Cloud
Computing. SoCC ’20. Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 179–192. ISBN: 978-1-4503-8137-6. DOI: 10.1145/
3419111.3421279.

[45] Oleksii Shyshkov. Load Balancing. July 20, 2018. URL: https : / /
oshyshkov.com/2018/07/20/load-balancing/ (visited on
Oct. 2, 2020).

[46] Sumeet Singh et al. “Packet Classification Using Multidimensional Cutting”.
In: Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. SIGCOMM
’03. Association for Computing Machinery, 2003, pp. 213–224. ISBN: 1-
58113-735-4. DOI: 10.1145/863955.863980.

[47] Source Code of the Concury Prototype. 2019. URL: https://www.
dropbox.com/s/ruou2l340uu1f4u/concury%20code.zip
(visited on Nov. 16, 2020).

[48] Std::Shared_mutex - Cppreference.Com. URL: https://en.cppreference.
com/w/cpp/thread/shared_mutex (visited on Nov. 16, 2020).

https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/greg7mdp/sparsepp
https://doi.org/10.1145/3230718.3232629
https://github.com/technicolor-research/cuckoopp
https://github.com/technicolor-research/cuckoopp
https://doi.org/10.1145/3419111.3421279
https://doi.org/10.1145/3419111.3421279
https://oshyshkov.com/2018/07/20/load-balancing/
https://oshyshkov.com/2018/07/20/load-balancing/
https://doi.org/10.1145/863955.863980
https://www.dropbox.com/s/ruou2l340uu1f4u/concury%20code.zip
https://www.dropbox.com/s/ruou2l340uu1f4u/concury%20code.zip
https://en.cppreference.com/w/cpp/thread/shared_mutex
https://en.cppreference.com/w/cpp/thread/shared_mutex


REFERENCES 56

[49] Std::Unordered_map - Cppreference.Com. URL: https://en.cppreference.
com/w/cpp/container/unordered_map (visited on Oct. 13,
2020).

[50] Liu Tianhua et al. “The Design and Implementation of Zero-Copy for Linux”.
In: 2008 Eighth International Conference on Intelligent Systems Design and
Applications. 2008 Eighth International Conference on Intelligent Systems
Design and Applications (ISDA). Kaohsuing, Taiwan: IEEE, Nov. 2008,
pp. 121–126. ISBN: 978-0-7695-3382-7. DOI: 10.1109/ISDA.2008.
102.

[51] TRex team. TRex Stateless Support. URL: https://trex-tgn.cisco.
com/trex/doc/trex_stateless.html (visited on Oct. 11, 2020).

[52] Dong Zhou et al. “Scalable, High Performance Ethernet Forwarding with
CuckooSwitch”. In: Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies. CoNEXT ’13. Association for
Computing Machinery, 2013, pp. 97–108. ISBN: 978-1-4503-2101-3. DOI:
10.1145/2535372.2535379.

https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/unordered_map
https://doi.org/10.1109/ISDA.2008.102
https://doi.org/10.1109/ISDA.2008.102
https://trex-tgn.cisco.com/trex/doc/trex_stateless.html
https://trex-tgn.cisco.com/trex/doc/trex_stateless.html
https://doi.org/10.1145/2535372.2535379

	Introduction
	Problem statement
	Goals
	Methodology
	Limitations
	Sustainability and ethical considerations
	Structure of the report

	Background
	Load balancers
	Stateless load balancers
	Stateful load balancers

	Data Plane Development Kit
	FastClick
	Related work
	Hardware-based flow classification
	Software based flow classification


	Experimental setup
	Testbed
	FastClick configuration
	Stateless load balancer configuration
	Stateful load balancer configuration

	Traffic generation
	Stateless traffic generation with TRex
	Stateful traffic generation with TRex
	Improvements to TRex
	Integration in the testing application

	Profiling with perf

	Implementation
	Literature Review
	Hash tables
	Comparison of reported performance numbers

	Single-core load balancers
	Round hashing (stateless)
	Flow table using Cuckoo
	Flow table using C++ unordered maps
	Flow table using Hopscotch maps
	Flow table using Cuckoo++

	Multi-core load balancers
	Shared mutex lock
	Duplication of the flow table across cores


	Evaluation
	Evaluation process
	Scaling methods
	Hash table performance

	Conclusion
	Future work


