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Abstract

In recent years, trusted execution environments (TEEs) have seen increasing deployment in comput-
ing devices to protect security-critical software from run-time attacks and provide isolation from an
untrustworthy operating system (OS). A trusted party verifies the software that runs in a TEE using
remote attestation procedures. However, the publication of transient execution attacks such as Spectre
and Meltdown revealed fundamental weaknesses in many TEE architectures, including Intel Software
Guard Exentsions (SGX) and Arm TrustZone. These attacks can extract cryptographic secrets, thereby
compromising the integrity of the remote attestation procedure.

In this work, we design and develop a TEE architecture that provides remote attestation integrity
protection even when confidentiality of the TEE is compromised. We use the formally verified seL4
microkernel to build the TEE, which ensures strong isolation and integrity. We offload cryptographic
operations to a secure co-processor that does not share any vulnerable microarchitectural hardware units
with the main processor, to protect against transient execution attacks. Our design guarantees integrity of
the remote attestation procedure. It can be extended to leverage co-processors from Google and Apple,
for wide-scale deployment on mobile devices.

Keywords trusted execution environment, remote attestation, sel4, microkernel, arm trustzone, intel
sgx, side-channels, transient execution attacks
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1. Introduction

“Nobody ever figures out what life is all about, and it

doesn’t matter. Explore the world. Nearly everything is

really interesting if you go into it deeply enough”

Richard P. Feynman

The development of the Internet and its increasing presence in society have spurred

demand for computer systems. Computers are now found everywhere, from large scale

industrial data centers, to tiny applications in embedded environments, and mobile

devices everyone carries. With the increased reliance on computing devices has also

come an increase in requirements for their security.

Already since the 1960’s, there have been efforts to secure computer operating system

(OS) against criminal actors [44]. Early work on security and standards mostly came

from governmental organizations in the United States [22], including the Department of

Defense (DoD) and the Air Force Electronic Systems Division. The resource-sharing

computer systems of that time relied on separation enforced by the OS. Generally,

these systems were found to provide practically no protection from deliberate attempts

to violate the OS [22]. As a reaction, James Anderson and others introduced the

concept of a reference monitor in a technical report from the 1970’s [4], kicking off

the serious attention to systems security in the IT sector. The developments of these

times are captured in the proliferation of general security principles still applied to

OSs today.

OS security in this thesis encompasses three principles: integrity, isolation, and access

control.

The first principle is the integrity of computer programs and data stored in memory and

other media, i.e., the bits that encode them stay consistent over time with high reliability.

Violations of integrity, either malicious or unintentional, can cause significant problems.

For example, the disfunction of software crucial for proper operation of a modern car

might lead to a disaster. As another example, violations of data integrity in global

financial systems can severely impact the life of real people.

The nature of the early multi-user systems and the concurrent operation of modern

computers give rise to the second security principle; isolation. Even though an OS

might be executing many different processes concurrently, none should be able to inter-

fere with each other in an unauthorized manner. To securely run software, processes
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Introduction

must be isolated and prevented from affecting each other’s memory and execution,

except through well-defined and intended interfaces.

Then there is the security principle of access control. The OS is tasked with separating

the data and other resources owned by different programs or users. It must only

allow access to data for the entity that owns it, or for others who have been assigned

appropriate rights. Access control is thus a method of providing confidentiality of

resources.

Though the security principles are clear, in practice it has proven to be challenging

to ensure complete adherence to them. OSs and other computer programs are so

complex that formal verification of security properties never seemed feasible. Over

time, security issues have become more relevant and of higher impact.

1.1 Breaking security

Memory safety bugs are prevalent and form one of the most dangerous types of software

vulnerabilities [80]. Any such vulnerability is a potential information leak. They are

found — among other places — in web browsers such as Chrome and Firefox, and

cryptographic libraries protecting internet connections [80, 25]. The consequences of

these bugs extend to the compromise of secret keys that protect passwords, banking

details, and personal information sent over the internet.

Other run-time attacks exploit software defects to influence a targeted computer system

into behaving maliciously instead of only leaking information. These might ultimately

give the attacker access to the computer system. A famous example is the Morris

worm [66], which exploited a software defect to spread itself to a large share of the

computers connected to the Internet.

A different class of attacks are side-channel attacks. Side-channel attacks exploit

information retrieved from computer system components functioning as intended, such

as timing information [14, 32], power consumption [49, 82], and electromagnetic leaks

[2]. These attacks often aim to retrieve cryptographic keys or other secrets, that would

allow access to confidential data [14] or enable impersonation [34].

1.2 Trusted execution

Due to the prevalance of security vulnerabilities, researchers and programmers have

sought solutions to protect security-critical software against attacks. One idea is to

separate sensitive software and data from the OS. Compromised applications or even an

adversary controlling the OS can then no longer access the sensitive software. This is
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the premise of a trusted execution environment (TEE). A TEE isolates the execution of

confidential programs and operations on sensitive data from a potentially malicious OS.

It does this through a combination of software and hardware mechanisms. Examples

of technologies for TEEs are Arm TrustZone [6] and Intel SGX [57].

However, the existing TEE solutions have not been infallible either. Researchers

identified more than a hundred vulnerabilities in TrustZone-assisted TEE systems in

recent years [17]. There are more than twenty published attacks on Intel SGX [61],

some of which manage to compromise the full memory contents of the SGX system.

Many of these are side-channel attacks that compromise the secure keys used for

attestation in these systems. This consequently breaks the trust in the software running

in these TEEs.

1.3 Contributions

We present an architecture for TEE remote attestation that upholds integrity guarantees

in the presence of the same attacks that compromised earlier TEE technologies. We

achieve this by leveraging the formally verified seL4 microkernel and a secure co-

processor for cryptographic operations. The following lists our contributions.

• Designed and implemented a TEE remote attestation architecture with strong

integrity and isolation security guarantees in the presence of vulnerabilities and

side-channel attacks.

• Designed a method to dynamically load and execute user-provided trusted appli-

cations (TAs) in our TEE.

• Considered the performance overhead of our TEE remote attestation architecture.

1.4 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 presents a background

on TEEs, side-channel attacks, and the seL4 microkernel. Chapter 3 formulates the

system and adversary model and makes the security goals and performance goals of

this work explicit. Chapter 4 describes our proposed TEE remote attestation system

design. Chapter 5 explains how we implemented our TEE remote attestation system.

In Chapter 6, we evaluate our system’s implementation from a security perspective

and consider its performance properties. Chapter 7 discusses what we would have

done differently given more resources and describes future work. In Chapter 8, we

describe the related work with respect to TEE designs and defenses. Finally, Chapter

9 concludes this thesis work.
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2. Background

“Let’s start with the end of the world, why don’t we? Get

it over with and move on to more interesting things.”

N.K. Jemisin, The Fifth Season

2.1 Trusted execution environments

A trusted execution environment (TEE) is an environment that enforces that code and

data loaded inside cannot be tampered with or read by code outside that environment.

TEEs provide isolation for small pieces of trusted software from the rest of the device,

called the rich execution environment (REE), which typically includes an operating

system (OS), such as Linux, and user space applications. To enforce this isolation,

TEEs use hardware-based security mechanisms in combination with software security

mechanisms. This allows developers to design applications that remain secure even

when the REE OS is compromised.

Trusted platform modules (TPMs) and hardware security modules (HSMs) are two

examples of TEEs. A TPM generally provides a secure key storage for hard drive

encryption and a minimal set of cryptographic operations often used for validating

steps in the booting processing. An HSM typically provides hardware-accelerated

cryptographic operations and secure key and certificate storage. Both are often im-

plemented as separate hardware microcontrollers, embedded at different levels of a

system. In this work, we are concerned with a TEE that provides an isolated execution

environment on the main processor, where sensitive data is stored, processed, and

protected. Specifically, by running it on the main processor it takes advantage of higher

processing speed and larger amounts of memory than other secure environments —

i.e., TPMs and HSMs.

There are multiple use cases for TEEs [26, 68].

Digital rights management (DRM) solutions might make use of a TEE, when dis-

tributors of media content (e.g., films, music) want to protect their digitally encoded

content from being copied by the owner of the device. For example, a TEE decrypts

an incoming media stream and pushes it over a trusted path to an approved display. Or,

a TEE prevents other applications on the device from reading the copyright-protected

contents when they are stored on the device. It does this by only exposing the content
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to environments approved by the distributor or developer. As an example, Widevine is

a content protection system by Google that specifies the use of a TEE [93].

A TEE is also suitable for digital payment scenarios that require high security and trust

in the device. It helps to provide strong identification and proof of transaction. The

TEE secures the execution of cryptographic algorithms used for signature verification

and authentication.

Many devices today secure their biometric authentication methods with a TEE, e.g.,

Apple’s and Samsung’s mobile devices [5, 85]. The TEE stores a template for the

biometric factor — face, or fingerprint — and performs extraction and matching of

new samples in a secure manner. They often incorporate trusted hardware paths for

input, to minimize the opportunities for attackers to gather data or exploit the user via

malicious user-interface elements.

In the scenario of cloud computing, a tenant can use TEEs to store sensitive data such

as customer details or to perform sensitive computations, while preventing the cloud

provider from accessing the data. This provides better data security for the tenant and

reduced liability for the cloud provider.

2.1.1 Security requirements and capabilities

The GlobalPlatform industry consortium defines a set of high level security require-

ments for TEEs in their standard on TEE system architecture [84]. We summarize

those requirements here.

• Protect assets from the REE and other (execution) environments, through hard-

ware mechanisms that other environments cannot control.

• Prevent system components from accessing assets in a TEE unless they them-

selves are a protected asset of the TEE.

• Protect against some physical attacks [83].

• Instantiate the trusted OS from a root of trust (RoT) through a secure boot

process.

• Provide trusted storage of data and keys.

• Enforce that software outside the TEE can only call the external application

programming interface (API) of the TEE, that can verify the acceptability of an

operation. Prevent outside software from directly calling functionality from any

of the TEE’s internal APIs.

To prevent hardware simulation, a TEE uses a hardware RoT — a highly reliable,

secure-by-design component that performs specific, security-critical functions. The

root of trust consists of a set of private keys that are provisioned to the device during
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manufacturing, in a manner that prevents them from being changed. Manufacturers

store the respective public keys, together with information from trusted parties (i.e.,

chip vendors). Chip vendors use this key infrastructure to, for example, sign and

distribute trusted firmware.

Generally, we consider an environment to be a TEE when it has three main capabili-

ties.

1. Isolation of execution from the REE, providing confidentiality and integrity for

code and data.

2. Secure storage of persistent data, guaranteeing confidentiality and integrity

across reboots in the presence of an adversarial REE.

3. Attestation of the software running in the TEE; attesting to a third party that a

certain version of the application is loaded or executing in the TEE.

Remote attestation

Remote attestation is a process of verifying the integrity of a remote system’s state.

This generally happens via a challenge-response protocol, where the relying third

party poses a fresh challenge that the remote system responds to with a verifiable

cryptographic signature.

The remote system additionally includes an attestation of the software on the system.

An attestation is a cryptographic signature that certifies a hash of the software’s state.

Though there exist control-flow attestation mechanisms that take place later in the

execution lifecycle of a software application [1], in this work, we take attestation

to mean the verification of the initial state of an application. This is called static

attestation.

Remote attestation requires a trust assumption for authenticity of the attestation report.

The platform of the remote system thus generally contains a RoT that forms the basis

of a remote relying party’s trust in a system and, consequently, their trust in the remote

attestation procedure. The relying party can verify an attestation report against an

endorsement certificate created by the trusted hardware’s manufacturer.

2.1.2 General architecture

The GlobalPlatform industry consortium specifies a software architecture for TEEs that

outlines the relationship between major components. Figure 2.1 depicts a simplified

architecture based on GlobalPlatform standards [84].

The trusted applications (TAs) in a TEE generally do not run complete user-facing ap-

plications. Instead, normal applications in the REE invoke them via client applications

to perform specific tasks that require the security guarantees provided by the TEE. For
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Platform hardware

Rich Execution Environment Trusted Execution Environment

Public peripherals Trusted peripherals

REE OS TEE OS

Communication
agent

Communication
agent

Application(s) Client
Application(s)

TEE Client API Internal API

Trusted
Application

TA
TA

TA

Isolation

Messages

Low-level message routing Application interfaces

Figure 2.1. General trusted execution environment (TEE) software architecture. The TEE and
rich execution environment (REE) are isolated by hardware mechanisms, but can
still communicate via the platform application programming interface (API). The
TEE runs its separate, trusted operating system (OS), and exposes internal APIs
to provide functionality to every trusted application (TA) it runs.

example, a banking application might only call a TA to handle user authentication

when an individual starts a transaction. The REE application can manage the rest of

the transaction process that does not require those higher levels of security.

2.1.3 Real-world architectures

There exist several hardware technologies that support the implementation of TEEs.

Arm designed TrustZone as extension to a selection of their architectures, which they

license to other companies. Microprocessor manufacturers AMD and Intel developed

platform security processor (PSP) and Software Guard Exentsions (SGX) respectively.

For RISC-V, there are multiple TEE designs available [58, 54, 29]

Intel SGX and Arm TrustZone are the most widely used in TEE implementations

today.

Arm TrustZone

Arm TrustZone is a set of security extensions to the Arm architecture [69]. TrustZone

adds processor support for a new execution mode and memory protections that allow
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the system to distinguish between two protection domains called secure world and non-

secure world. Both worlds are hardware-isolated and have different sets of privileges,

with non-secure software prevented from accessing any resources from the secure

world. At any point in time, the processor operates exclusively in one of the two

worlds.

The current world in which the processor executes is encoded in a new processor bit

called the non-secure (NS) bit, which can be read from the secure configuration register

(SCR). TrustZone introduces the monitor mode which is responsible for preserving

the processor state when world switches occur. Via a new privileged instruction called

the secure monitor call (SMC), software stacks in both worlds can be bridged by the

secure monitor software. TrustZone also provides memory extensions to configure

memory regions as secure or non-secure, to protect non-secure world applications

from accessing memory belonging to the secure world.

The Arm architecture has different levels of access to system and processor resources

called exception levels (ELs) [8]. The common usage model of ELs is as follows.

• EL0 for applications

• EL1 for the OS kernel

• EL2 for hypervisors

• EL3 for the secure monitor

The secure monitor that handles the world switches operates on EL3, which is the

highest privilege level. It has thus access to more system and processor resources than

any OS, which allows it to effectively isolate the OS in the non-secure world from the

OS in the secure world.

This described the TrustZone extensions for Arm’s application processors (Cortex-A).

The TrustZone requirements for Arm microcontrollers (Cortex-M) [7] are different,

because of the processor family’s focus on fast context switches and low-power appli-

cations. TrustZone for Armv8-M uses a memory-map based division between worlds

where transitions take place in exception handling code. This allows it to remove the

monitor mode and thus the need for any secure monitor software, leading to more

efficient world transitions.

TrustZone is not a TEE in itself yet. Instead, its secure world provides the execution

environment where a TEE may reside. Examples of TEEs implemented on top of

TrustZone technology are Samsung Knox [70] and Open-TEE [56].

During boot, a TrustZone-enabled Arm processor enters the secure world to allow

privileged software to initialize their protections and perform hardware measurement

operations. This feature enables the implementation of a secure boot process that veri-
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fies the platform state, which forms the basis for trusted remote attestation. For example,

Samsung Knox provides secure boot using TrustZone in this manner [69].

Intel SGX

Intel SGX differs from TrustZone in the size of its trusted computing base (TCB).

As a general rationale, a smaller TCB has a smaller attack surface and thus a lower

chance of vulnerabilities, leading to better security. The split-world architecture of

TrustZone means that any software operating at the higher privilege level is inherently

part of the TCB, because they have greater access to the machine. In contrast, SGX

uses an enclave architecture, backed by trusted hardware, that provides strong isolation

between TAs, such that a trusted OS does not become part of the TCB.

Enclaves are execution environments for code and data that are protected from any

outside software environment. The threat model for enclaves only trusts the enclave

itself and treats all outside processes — including the OS and any hypervisor — as

potential adversaries.

An SGX enclave is part of the host process application. However, an application is not

able to access an enclave’s memory, which resides in the enclave page cache (EPC).

The EPC is a protected area of memory consisting of 4 KB pages that stores enclave

code and data. This memory area is encrypted using a new hardware unit called the

memory encryption engine (MEE), and is only decrypted once inside the physical

processing core [37].

An application creates and initializes enclaves for its own use. SGX associates every

enclave with an SGX enclave control structure (SECS) that stores metadata in a dedi-

cated EPC page. The initialization of an SECS creates a new enclave. An application

then loads the initial code and data into the enclave. For every page loaded, the system

software updates the enclave’s measurement that is used for attestation. Measurements

are cryptographic hashes that uniquely identify a system state. An application initial-

izes its enclave via Intel’s architectural Launch Enclave. It can then enter the enclave

by transferring control to a pre-determined location within it.

SGX supports two types of attestation: local and remote [3, 45]. In local attestation,

an enclave proves its identity to another target enclave on the same system. It produces

a signed attestation report that contains a hash of the measured contents of the enclave

(MRENCLAVE), its sealing identity (MRSIGNER), its attributes, and additional information.

It also appends a message authentication code (MAC) created with a symmetric key

unique to the platform. The target enclave verifies this report to establish confidence

that it is communicating with a legitimate enclave on the system.

Where local attestation uses a symmetric key for verification, remote attestation to

9



Background

outside the platform requires asymmetric cryptography. SGX provides an architectural

enclave specifically for remote attestation; the Quoting Enclave. The Quoting Enclave

verifies reports from other enclaves on the system following the method described

above. It then replaces the MAC with an attestation signature produced with the

Attestation Key. The Attestation Key is generated by the Provisioning Enclave in SGX

and Intel’s provisioning service when a new enclave is created. The Quoting Enclave

uses this key to generate attestations — called quotes — that can be verified to originate

from a legitimate SGX enclave hosted on trusted hardware. It additionally includes

the hashed measurements of the contents of the enclave. Finally, the remote party

verifies that this value agrees with what they expected; ensuring that a specific piece

of software is running.

The provisioning enclave is part of the trust chain on which attestation builds. During

manufacturing, Intel generates a provisioning secret for a processor. Every processor

additionally has secrets sealed into its e-fuses — a form of one-time programmable

read-only memory. The provisioning enclave uses both elements to demonstrate the

SGX platform’s authenticity to Intel, in order to receive appropriate attestation keys.

This ensures the trust in the later remote attestation phases.

2.2 Side-channel attacks

Side-channel attacks are a type of security exploit. Many classes of security exploits

target specific vulnerabilites in software. Vulnerabilities such as memory safety vi-

olations, input validation errors, and race conditions are often caused by mistakes

or inaccuracies from the people developing the software. In contrast, side-channel

attacks are based on information gained from legitimate operation of computer systems.

However, no one had expected this information could also be used to infer valuable

data; it is thus accidental leakage of sensitive data. Originally, side-channels were

understood to be the exploitation of physical phenomena that were the by-product of

the execution of tasks on electronic devices. These original channels include power

consumption, electromagnetic radiation, heat, and noise [79]. Researchers have shown

how to find secret keys by analyzing power consumption [49], how to break power

analysis countermeasures and extract compromising information via electromagnetic

radiation [2], and how to extract RSA keys using acoustic cryptanalysis [34]. Timing

attacks are another side-channel attack. They enable an attacker to infer secret infor-

mation based on the time it takes a computer to perform certain tasks [14]. Timing

attacks often target cryptographic operations to extract secret keys.

TEEs are also vulnerable to these side-channels. In 2017, a TEE based on TrustZone
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was found to be vulnerable to a timing attack that enabled attackers to extract crypto-

graphic secrets [17]. The CLKscrew attack exploits energy management mechanisms

to extract secret cryptographic keys from TrustZone and escalate its privileges by

loading self-signed code [82]. Plundervolt is a similar attack, but it targets Intel SGX

instead of TrustZone [59].

These side-channel attacks are distinct from earlier computer security problems. As

such, they also require different mitigations in comparison with the usual software

vulnerabilities. These mitigations range from signal size reduction, time randomization,

to the introduction of noise to decrease the amount of information that is leaked, and

constant-time operations [79].

In the remainder of this section we describe the class of side-channels that appears most

frequently in attacks against TEEs: microarchitectural side-channels. In particular,

we consider cache side-channel attacks and transient execution attacks. These side-

channel attacks exploit complex microarchitectural behavior used to improve processor

performance.

2.2.1 Background on microarchitecture

A microarchitecture is the implementation of an instruction set architecture (ISA) in a

processor. The ISA serves as an interface between hardware and software. As such,

it abstracts over details concerning functional implementation, such as pipelines and

caches. These constitute the microarchitecture instead. Examples of ISAs are the

ubiquitous x86 architecture [9], Armv8 [8], and more recently RISC-V [92]. Examples

of microarchitectures on the other hand, are Intel’s Cypress Cove implemented on the

eleventh generation Intel Core desktop microprocessors [42], and Arm’s Cortex-A78

implemented in several Samsung Exynos [28] and Qualcomm Snapdragon micropro-

cessors [30], among others. Both the architecture and microarchitecture are stateful.

The architectural state includes memory and registers that are accessible to the pro-

grammer. Whereas the microarchitectural state includes entries in various caches that

are used to improve performance without affecting the architectural state.

Instruction cycles and pipelining

The instruction cycle is an important concept of microarchitectures. By repeating the

instruction cycle, the processor runs programs. On a high level, the instruction cycle

consists of four steps.

1. Fetch and decode an instruction

2. Retrieve data needed for the instruction

3. Execute the instruction

4. Write the results to the destination register
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A great improvement to performance of the cycle is the concept of instruction pipelining.

Early processors would execute all four steps sequentially for a single instruction before

they moved on to the next instruction. This approach is inefficient. While executing an

instruction, the decoding circuitry of the processor is idle. In fact, with this sequential

approach, large parts of the processor circuitry will be idle most of the time. It would

instead be much more efficient to already decode the next instruction while processing

the current one. This is exactly the idea of instruction pipelining. In order to keep

every part of the processor busy, incoming instructions flow through the processor

in multiple stages. Thus at any clock cycle, there can be multiple instructions in the

pipeline. The aim is to keep every part of the processor busy. Modern pipelines consist

of fourteen to twenty stages. Embedded processors might do with less; between six

and twelve. Putting significantly more stages in the pipeline eventually hits the law

of diminishing return. This is exemplified by Intel’s Prescott microarchitecture that

had a deeper instruction pipeline of 31 stages, but experienced issues with power

consumption and heat dissipation [43].

There are several more techniques for optimizing instruction pipelines. However, these

optimizations also introduce new vulnerabilities such as side channels, e.g., when

instructions alter the cache state in a way that leaks sensitive data. Such vulnerabilities

are hard to mitigate, because programmers cannot directly control the microarchi-

tectural state, and the microarchitectural behavior is often complex, propriety, and

undocumented.

Out-of-order execution

Processors optimize their utilization by allowing for out-of-order execution of instruc-

tions in the pipeline. For example, performing a memory operation takes a relatively

long time and if the processor were only executing instructions in-order, it would have

to wait until the memory operation returned. Instead, the processor might already

execute the next instruction out-of-order while it is waiting. This speeds up general

execution of programs.

A processor stores instructions it completed out-of-order in a buffer. When the ex-

ecution flow catches up, the processor retrieves the instructions from the buffer in

the correct order. Only then do the results of these instructions become visible in the

architectural state.

Speculative execution

When performing out-of-order executions, a processor often does not know the future

instruction sequence yet. For example, this is the case when execution reaches condi-

tional branch instructions whose direction depends on earlier instructions that have

not completed yet. Recall the example of a memory operation from earlier. To address
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this problem, processors speculate on the value that determines a future instruction se-

quence. They then speculatively execute instructions along that path. When execution

of the speculated instruction is resolved, the processor verifies whether the prediction

was correct. Upon a correct prediction, the processor retrieves the speculative instruc-

tions’ results and applies them in program execution order. Otherwise, the processor

abandons pending instructions along the path, restores its state from a checkpoint,

and resumes execution along the correct path. The speculative execution technique

increases the performance of microprocessors.

Branch prediction

Branch prediction is related to the instruction pipelining concept. Imagine that one of

the instructions going through the pipeline is a branch instruction. A branch instruction

is the implementation of an if-else construct. Depending on the argument value, there

will be different instruction sequences that come next. However, when the branch

instruction is finally executed, several other instructions will already be in the pipeline.

If the instructions in the pipeline are from the incorrect branch, the one that does not

end up being followed, the processor wasted cycles on executing them anyway. This

is where the branch predictor comes into play. Its task is to make the most accurate

predictions for which branch is most likely to be taken. This prediction will then inform

which instruction sequence flows through the pipeline. The branch predictor bases

its guesses on historical information, e.g., which branch has been taken more often

recently. It is built as a digital circuit on the processor.

Branch mispredictions have a larger effect on system performance when the instruction

pipelines are deeper. Because instructions cannot just be removed from the pipeline,

they have to go through all stages up until execution. The number of cycles wasted

upon a branch misprediction is thus equal to the number of stages from fetch to

execution.

Because the branch predictor acts on historical information, it can also be intentionally

trained to behave in a specific way. A malicious actor could use this to either infer what

computations have altered its behavior, or even to transiently execute an attacker-chosen

instruction sequence.

Caches

Processor caches are an important part of the memory hierarchy in modern computers

[81, 32]. With the speeds of memory and processors diverging over the last decades,

caches help to bridge the gap. Caches are fast, but small and expensive, memory that

are used to store data being accessed by the processor. Most processors include a

hierarchy of cache levels. Today, they often have three levels: from L1, which is fastest

and smallest, to L3, which is larger but slower. The L1 cache is frequently split up in
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Tag Data Tag Data

Way 1 Way 0

Set 3
Set 2

Set 0

Tag Set Offset
Memory address

Set 1

Cache line

Figure 2.2. Typical addressing of a cache line in a 2-way set-associative cache. The memory
address determines the exact mapping. It is split up in different cache fields that
indicate a byte offset, the set index, and the identifying tag (consisting of the
remaining most significant bits).

separate caches for instructions and data, called L1i and L1d respectively. The use of

caches is more efficient when the hit rate is high, i.e., when a higher fraction of requests

is satisfied from the cache instead of accessing the slower main memory. A cache miss

occurs when the requested data is not found in any of the caches. The processor then

fetches the data from main memory and places it in a cache. If there already exists

other data in the slot, the processor evicts — i.e., removes — it before storing the new

data. A higher share of cache evictions impacts performance negatively.

Caches are divided into cache lines [39]. A cache line holds an aligned block of

adjacent bytes from memory, usually a power of two in size. Grouping together

adjacent bytes makes use of spatial locality and limits implementation complexity. As

a consequence, if replacing any single byte in the cache, the whole cache line needs to

be evicted.

A cache placement policy determines where the data at a memory address is placed in

a cache. Most architectures specify a set-associative policy. A W-way set-associative

cache divides its memory into cache sets that each consist of W cache lines. Cache

sets are directly addressable, but the way where the cache line resides must be found

by comparing its tag. Figure 2.2 illustrates a typical cache addressing scenario.

2.2.2 Cache-based side-channel attacks

Many cache-based side-channels originate from timing differences measurable by the

attacker. The intuition stems from the fundamental purpose of caches; the processor

wants to access certain data faster. An attacker can measure memory access times to

infer whether the victim has touched the corresponding cache lines. When a measure-

ment takes relatively long (~100ns), the attacker infers that the data had to come from
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memory rather than from cache. In contrast, if the request returned quickly (10-25ns),

the attacker knows that it hit the cache. This principle allows an attacker to learn

about the memory access patterns of the victim. Researchers have proposed several

techniques to exploit this.

Prime+Probe

This technique from 2006 [67] consists of two main steps. Firstly, an attacker primes

an area of the cache by filling cache sets with its own cache lines. After waiting for the

victim to have executed again, the second step encompasses probing — accessing and

changing data — the cache lines the attacker loaded earlier. By observing the timing

of each probe, the attacker sees which cache lines have been evicted. This tells them

that the victim must have accessed an address in memory that maps to the same cache

set.

Flush+Reload

The advantage of Flush+Reload over Prime+Probe is that it allows to target a specific

cache line rather than only a cache set [95]. The technique uses the last-level cache

(LLC), which is shared by all cores on a processor implementing the x86 architecture,

and it relies on the existence of shared virtual memory (e.g., shared libraries).

A Flush+Reload attack consists of three phases. Firstly, the attacker flushes the

targeted line from the cache. Secondly, they wait to allow for the victim to access the

memory line. Thirdly, the attacker reloads the memory line and measures the time

it takes. If the victim accessed the memory line and caused it to appear in the same

cache location again, the reload operation will return quickly. Otherwise, the victim

did not access the memory line and the attacker’s probe will take longer because the

line needs to be fetched from main memory first.

Flush+Reload is a generic technique also used as a building block for more advanced

attacks, such as Spectre and Meltdown.

2.2.3 Transient execution attacks

Transient instructions are instructions executed speculatively by the processor, but

that are discarded after a pipeline flush, e.g., on a branch misprediction [16]. The

pipeline flush discards any architectural effects of these pending instructions. However,

transient execution attacks leverage the fact that transient instructions have persisting

microarchitectural side effects to exfiltrate data across security boundaries. An attacker

can steer or even choose the instruction sequences to execute transiently, depending on

the attack they employ.

The field of transient execution attacks emerged recently with the publication of the
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Spectre and Meltdown attacks [50, 55]. These attacks have shown how to dump

memory, intercept passwords, and reconstruct images. Transient execution attacks are

also shown to work against TEEs, e.g., in SgxPectre [19] and Foreshadow [15].

Spectre

Spectre attacks trick a victim into speculatively executing instructions which leak

confidential data via a covert channel [50]. These attacks consist of two main parts: a

microarchitectural element to exploit, and a covert channel through which to exfiltrate

data. Canella et al. categorize Spectre variants based on the microarchitectural elements

they exploit: pattern history table (PHT), branch target buffer (BTB), return stack buffer

(RSB), and store to load (STL) [16]. All of these are part of predictive optimizations

in microprocessors. Spectre attacks use cache-based covert channels (Section 2.2.2) to

exfiltrate data across architectural security boundaries. The original paper describes

attacks using Flush+Reload and a variant called Evict+Reload [50].

Spectre attacks bypass software-defined security boundaries such as bounds checking.

An attacker can trick the victim into transiently executing instructions on memory

locations they have access to, but which the attacker is not authorized to address

directly.

To trick the victim into speculative execution of these instructions, an attacker first

prepares the processor by mistraining its prediction machinery. The attacker also

prepares the covert channel, e.g., by performing the flush portion of the Flush+Reload

attack. As a final step in the setup, the attacker performs operations to trigger the

desired speculative state. For example, they perform targeted memory reads that cause

the processor to evict a specific value from cache that is needed to determine a branch

target.

In the second phase, the processor performs the transient execution of instructions.

The transient execution may be triggered by requesting the victim to perform an action

via a system call, socket, or file. The results of this speculative execution reflect in the

prepared microarchitectural side-channel. For example, the victim speculatively reads

a memory value at an attacker-chosen address and subsequently performs a memory

operation that exposes the value via its modifications to the cache state.

Lastly, the attacker recovers the confidential data by timing the reads of memory ad-

dresses for the monitored cache lines, similar to a traditional side-channel attack.

Meltdown

Whereas Spectre attacks exploit transient execution following mispredictions of control

or data flow, Meltdown exploits transient execution after a faulting instruction [55].

The key observation is that speculation may still occur after exceptions in transient
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instructions. This characteristic allows the Meltdown attack to read kernel memory

from user space, bypassing architectural isolation barriers.

Meltdown is similar to Spectre and as such consists of the same two abstract parts

again. Firstly, Meltdown uses exceptions as the element to cause transient execution.

For the second phase, Meltdown uses a cache-based covert channel.

Most Meltdown variants rely on page faults to trigger the transient execution [16]. The

original attack reads data from a kernel memory address, which eventually causes

a page fault. Because of out-of-order execution, vulnerable processors identify the

exception generating instruction, but only tag its entry into the re-order buffer (ROB)

with an exception bit. They then continue speculative execution of other instructions.

The exception is handled once instructions are retired from the ROB and become

visible in the architectural state. By that point, transient instructions encoded the

privileged data into the microarchitectural state.

In its second phase, Meltdown uses the Flush+Reload technique to exfiltrate con-

fidential data kernel memory. Transient instructions encode the privileged data by

accessing specific cache lines. The attacker recovers this value by measuring the access

time for all cache lines.

All major operating systems used to map the kernel address space into the virtual

address space of every process. They also mapped physical memory into the kernel

address space. As such, an attacker employing Meltdown could read the entire physical

memory of a computer system. Since publication of the Meltdown attack, mitigations

isolate the kernel page table [35].

Extensions targeting Intel SGX

The original Spectre and Meltdown attacks were not demonstrated on Intel SGX.

However, later research has shown variants that target Intel SGX. Consequences

include the keypair extraction of Intel’s architectural enclaves (Section 2.1.3) and the

compromise of enclave secrets.

Foreshadow is an extension of Meltdown that targets Intel SGX [15]. It leverages

the same processor vulnerability that allows an attacker to use the results of transient

unauthorized memory accesses. Meltdown exploits transient execution to access kernel

memory before the fault caused by the access violation is handled and Meltdown

triggers a race condition by causing a page fault after accessing kernel memory. This

enables the exploitation of transient instructions, before the fault handler causes them

to revert. Intel SGX applies abort page semantics; silently replacing the read data

with a dummy value instead of raising a fault. Thus the race condition that enables

Meltdown is absent when targeting Intel SGX. However, Intel SGX only applies the
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abort page semantics after a legacy page table permission check succeeds without

issuing a page fault. Foreshadow avoids these mechanisms by revoking all access

permissions to the targeted enclave page, such that any access will lead to a page fault.

This page fault leads to the race condition that enables the transient execution without

abort semantics. Foreshadow then retrieves secrets in a similar vain as Meltdown; by

measuring the time it takes to access certain cache lines. Furthermore, Foreshadow

implements various optimization techniques to increase the bandwidth and reliability

of secret extraction.

The SgxPectre attack can also extract secrets from Intel’s architectural enclaves, but it

exploits a different type of hardware vulnerability than Foreshadow [19]. Specifically,

it presents ways to inject branch targets into SGX enclaves to trigger transient execution

and leak secrets out of the enclave. This technique is similar to the Spectre attacks

described earlier.

Lastly, the recent load value injection (LVI) attack presents new exploitations of Intel

SGX that are not hindered by mitigations against Spectre and Meltdown [88]. LVI is

not limited to hijacking branch outcomes, but allows to replace the result of any victim

load micro operation with attacker-controlled data.

2.3 seL4 microkernel

seL4 is a microkernel of the L4 family, designed for applications in safety- and security-

critical systems with high assurance and high performance [48].

As a microkernel, seL4 provides only a minimal set of features in kernel space. These

features include inter-process communication (IPC), threads, virtual address spaces,

capability-based access control, and interrupt control. seL4 leaves the implementation

of other OS functionality — e.g., memory management, networking stack, device

drivers — up to user space. This approach to kernel design creates a sufficiently small

TCB that allows to formally prove its correctness.

As a microkernel, seL4 is unique in that it includes formal and automated proofs

that the implementation is functionally correct, and that the formal model ensures

confidentiality and integrity [47]. These proofs do not cover protection against timing

channels — e.g., timing-based cache side-channels leveraged by Spectre and Meltdown

(Section 2.2). However, the researchers behind seL4 are working towards formal proofs

of timing-channel prevention [33, 41].

18



Background

2.3.1 Capabilities

seL4 is a capability-based microkernel [71]. A capability is a reference to an object,

which also encodes access rights to that object. For example, a read-write capability

to a frame object gives the owner of the capability read and write access to a specific

memory frame. Capabilities allow for delegation of access. Minting a capability copies

it to a new capability that may have fewer rights. It can then be transferred to another

entity. Revoking a capability strips the encoded access to the referenced object away

from the holder of a capability, and recursively revokes any capabilities that were

derived from it. Capabilities are monotonic, i.e., new capabilities will never have more

access rights than the capability they are derived from.

An application’s capabilities conceptually reside in its capability space (CSpace), which

is implemented as a directed graph of capability nodes (CNodes). Every CNode is a

table of slots, where each slot may contain other CNodes. In seL4, the kernel manages

all capabilities and an application only references these by their addresses.

SeL4 bootstraps user space by assigning it a root capability to all available memory

not used by the kernel. The initial user thread may split up the memory to create new,

isolated applications. Thus, all new capabilities to subsets of the system’s resources

are derived from the root capability. The monotonic nature of capabilities ensures that

no user space application has access to the kernel.

The capability-based access control also governs all seL4 kernel services. In order to

perform any operation, an entity must invoke a capability with the respective access

rights that it has in their possession. Capabilities always refer to a kernel object.

2.3.2 Kernel objects

The kernel objects defined by seL4 form the interface to the kernel itself. An application

that interacts with the kernel, does so via the creation, manipulation and combination

of the kernel objects. We only describe a subset of object types that are most relevant

to this work.

Thread control blocks represent a thread of execution that may be scheduled, blocked,

or unblocked depending on its interaction with other threads. A thread control block

has an associated CSpace and virtual address space (VSpace).

Virtual address space objects construct a VSpace for one or more threads, effectively

creating a sandbox around applications. A VSpace consists of a memory paging

structure of at least one level, depending on the specific hardware-level architecture.

For example, the following objects in seL4 correspond to the two-level paging structure
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of the Arm 32-bit ISA.

1. PageDirectory

2. PageTable

The lowest level of the paging structure will be filled with Frame objects that correspond

to frames of physical memory.

Endpoints facilitate message passing communication between threads, but also be-

tween applications and the kernel itself. IPC uses Endpoints and is synchronous.

Capabilities to Endpoints can be restricted to send- or receive-only. Communication

requires two Endpoints; one per direction. Capabilities can be sent in a message over

Endpoints to transfer them.

Untyped memory objects are the foundational unit of memory allocation in seL4. Un-

typed objects can be retyped into other kernel objects. Additionally, they can be divided

into smaller groups such that part of the system’s memory can be delegated.

2.3.3 Memory allocation

The seL4 kernel does not dynamically allocate memory for kernel objects. Instead,

applications must explicitly create objects by retyping Untyped kernel objects. The

seL4 kernel provides system calls to retype Untyped objects. An application must

have a sufficient capability to these Untyped objects in order to create new objects.

These mechanisms for memory management enforce the isolation of physical memory

between different applications.

Upon booting a system, the seL4 kernel sets up all memory. It first allocates the

memory required for the kernel itself. seL4 then creates an initial user space thread

to which it transfers all capabilities to the remaining Untyped memory, and a few

capabilities to kernel objects necessary for bootstrapping the first thread. The kernel

hands over control to the user space thread. The user space thread may split up the

Untyped memory regions, create new threads or other kernel objects, and delegate

authority to parts of the system as it sees fit.

2.3.4 CAmkES and capDL

To make practical development on top of seL4 easier, there is the CAmkES software

library and framework. CAmkES supports component-based development of full soft-

ware systems with strong isolation guarantees [52][73]. It provides interfaces between

components via remote procedure calls (RPCs) for synchronous communication based

on seL4 Endpoint kernel objects. The two other communication interfaces are Events

for notifications and Dataports for shared data buffers. Each CAmkES component is al-
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Figure 2.3. An example of an seL4 system and the capabilities and objects involved. There are
two components: the Client and the Server. Their respective thread control blocks
(TCBs) contain capabilities to the top levels of their VSpace and CSpace. Both
components possess capabilities to two Endpoint objects (EP) used for synchronous
inter-process communication (IPC). They also both map two Frame objects into
their address space as shared memory for communication. The address space
paging structure in this example is based on the implementation of Arm 32-bit
ISA: page directory (PD), page table (PT), and their respective entries.

located a separate VSpace. This provides complete isolation between components, and

only allows explicitly exposed, well-defined communication interfaces. A CAmkES

application is defined using the architecture description language (ADL) that describes

components, their assembly, connections, and configuration. The CAmkES framework

processes all descriptions, combining it with code scaffolding, to build a complete and

bootable seL4 system image.

The capability description language (capDL) provides a way to explicitly describe

the capability distribution in seL4 systems [53, 74], i.e., a mapping between subjects

and object capabilities. SeL4 can use a capDL specification during its bootstrapping

process to simplify initialization of the system. CAmkES does this by default.

The seL4 project includes proofs that seL4 correctly initializes a system from boot

state into a defined protection state described by a capDL specification [76].

A capDL specification consists of two sections: objects, and capabilities. The objects

section describes all seL4 kernel objects in the system. The capabilities section specifies

the capabilities that every component in the system is assigned. Figure 2.3 presents

an example of a system with a client and a server component that communicate via

two endpoints and two shared frames. Listings 2.4 and 2.5 contain the corresponding

capDL specification.
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1 objects {

2 client_tcb = tcb

3 client_cnode = cnode

4 client_pd = pd

5 client_pt = pt

6 frame_client_0000 = frame(4k, fill: [file, offset])

7 frame_client_0001 = frame(4k, fill: [file, offset])

8
9 server_tcb = tcb

10 server_cnode = cnode

11 server_pd = pd

12 server_pt = pt

13 frame_server_0000 = frame(4k, fill: [file, offset])

14 frame_server_0001 = frame(4k, fill: [file, offset])

15
16 example_endpoint_0 = ep

17 example_endpoint_1 = ep

18
19 shared_frame_0 = frame (4k, fill: [])

20 shared_frame_1 = frame (4k, fill: [])

21 }

Figure 2.4. The objects section of a capability description language (capDL) specification for
the example system; simplified. The declaration of thread control block (TCB)
objects on lines (2) and (9) will create the respective applications in the seL4 system.
Subsequent lines declare the virtual address space (VSpace) and capability space
(CSpace) objects. Both applications declare two frame objects (6-7) and (13-14)
that are filled with their corresponding memory frames containing the application’s
executable. Lines (16-17) declare the Endpoint objects (EP) for communication
between components. Lines (19-20) declare the shared Frame objects and keeps
them empty.
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1 caps {

2 client_tcb {

3 cspace: client_cnode

4 vspace: client_pd

5 }

6
7 client_cnode {

8 0x1: example_endpoint_0

9 0x2: example_endpoint_1

10 }

11
12 client_pd {

13 0x0: client_pt

14 }

15
16 client_pt {

17 0x0: frame_client_0000 (RWX)

18 0x10: frame_client_0001 (RWX)

19 0x20: shared_frame_0 (RWX)

20 0x30: shared_frame_1 (RWX)

21 }

22
23 -- server capabilities follow analogously --

24 }

Figure 2.5. The capabilities section of a capability description language (capDL) specification
for the example system; simplified. Lines (2-5) initialize the thread control block
(TCB) object with capabilities to the roots of the client’s capability space (CSpace)
and virtual address space (VSpace), which were defined in Listing 2.4. Lines
(7-10) initialize the client’s CSpace with capabilities to the two Endpoints (EP)
in the system. Lines (17-18) map the application’s executable in its VSpace with
read-write-execute permissions. Lines (19-20) map the shared frames into the
client’s VSpace. The capability setup for the server component is similar to the
client’s, except that it uses its respective object names.
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3. Problem statement

“The mystery of life isn’t a problem to solve, but a

reality to experience.”

Frank Herbert, Dune

In this chapter we introduce the system and adversary models, in addition to the goals

and requirements of our work. The system model provides a brief overview of the

main components in the system and serves as context for the remainder of the chapter.

The adversary model describes an adversary’s goals and capabilities that in turn inform

the requirements of a system. When evaluating a system, the achieved functionality

and security are only meaningful in perspective of an adversary model. Finally, we

formulate the goals and a set of concrete requirements to help evaluate our work.

3.1 System model

The system on which we build consists of three main components.

1. A rich execution environment (REE)

2. A trusted execution environment (TEE)

3. A co-processor

Figure 3.1 shows a simple system overview.

Firstly, the REE runs a general-purpose operating system (OS) — e.g. GNU/Linux —

and any number of user space applications.

Secondly, the system has a separate TEE that runs a specialized, trusted OS. The

system provides integrity guarantees between the REE and the TEE, such that the TEE

can provide execution isolated from the REE. Applications from the REE can invoke

functionality on the TEE and load their own trusted applications (TAs), but cannot

directly manipulate memory or execution of the TEE.

Thirdly, the system contains a co-processor that is separated from the main processor.

We assume there is a secure communication channel in place between the TEE and

the co-processor. This co-processor performs sensitive cryptographic operations and

stores cryptographic secrets. The manufacturer initializes the co-processor with a

hardware root of trust (RoT).

The system has a hardware RoT that verifies the boot process of the firmware, which
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Figure 3.1. A minimal overview of the system model. The system is split into a separate rich
execution environment (REE) and trusted execution environment (TEE). Execution
and memory are isolated between the REE and TEE, though both still operate on
the same system on chip (SoC). The secure co-processor is a separate chip for
cryptographic operations that communicates with the TEE on the main SoC.

then ensures that the TEE is initialized correctly and separately from the REE. This is

similar to the operation of Arm TrustZone (Section 2.1.3).

3.2 Adversary model

We consider an adversary with two goals: 1) forge attestation reports, and 2) execute

unauthorized instructions in TAs. The adversary’s first goal is to forge attestation

reports to remote parties, in order to impersonate legitimate TAs. Consequently, the

remote party might expose sensitive information when they continue communication

with the adversary. The adversary’s second goal is to compromise the integrity of a

legitimate TA in order to alter its behavior.

We assume that the adversary controls the REE, including user space processes and

the OS. Consequently, the adversary can load arbitrary TAs in our TEE. This means

that the adversary can execute any malicious code in the TEE and attempt to forge

TA-specific attestations. Lastly, we assume that the adversary is able to compromise

confidentiality of the TEE’s trusted OS and TAs. They would achieve this either by

exploiting bugs in the trusted OS or TA code, or by leveraging side-channel attacks

(Section 2.2).

However, we assume that the hardware is secure and uncompromised, and that the

attacker cannot phsyically tamper with the hardware. Only a small fraction of real-

world attackers will have the resources to tamper with the physical SoC of a target,

thus we deem this a modest claim.

We assume that the secure co-processor guarantees confidentiality of its data and

operations. This is a reasonable assumption, as there already exist secure elements

that fit this claim — e.g., Apple’s Secure Enclave [5], Google’s Titan M [86], and the

OpenTitan project1.

1https://opentitan.org/
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In summary, the assumptions that form our adversary model are as follows.

• The adversary has full control over the REE and can thus load and execute

arbitrary TAs.

• The adversary can compromise confidentiality of TAs and the TEE OS.

• The adversary is unable to physically compromise the main processor or the

co-processor.

• The adversary is unable to break confidentiality of the co-processor.

3.3 Goals and requirements

The motivation for this thesis work is to design an architecture for TEE remote attesta-

tion that guarantees integrity in the presence of an adversary as described in Section

3.2. The TEE must provide remote attestation of TAs, even when confidentiality of the

TEE and TAs cannot be guaranteed. It must also guarantee integrity of other TAs and

the TEE in the presence of a TA loaded and controlled by the adversary. Additionally,

the TEE must support the secure dynamic loading of a new TA during run-time. We

desire a relying party to be able to perform secure remote attestation and trust that the

attested software is executed.

Our security requirements are thus as follows.

S-1: Provide secure remote attestation even when confidentiality of the TEE and

TAs cannot be guaranteed.

S-2: Retain isolation and integrity guarantees of TAs and the TEE, even in the

presence of an adversary-controlled TA.

S-3: Support secure dynamic loading of TAs.

Finally, we formulate a performance requirement for the attestation process of TAs.

P-1: The performance for attestation of TAs should be affordable relative to the

full execution cost of a TA.
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“How do you cause people to believe in an imagined

order such as Christianity, democracy or capitalism?

First, you never admit that the order is imagined.”

Yuval Noah Harari, Sapiens

4.1 High-level system design overview

Figure 4.1 shows the high-level system overview. Our design leverages the co-processor

and the formally verified seL4 microkernel to achieve security properties neither

provide on their own. We use seL4 as a basis for the trusted operating system (OS)

of the trusted execution environment (TEE). We chose the seL4 microkernel because

of its formally verified implementational correctness and formal model guaranteeing

confidentiality and integrity (S-2). These properties provide strong isolation between

all the components of our trusted OS design. The trusted OS manages the trusted

applications (TAs) that will be executed in the TEE. Thus, the TAs will have the same

isolation guarantees with respect to the TEE and other TAs.

However, seL4 does not formally prove protection against timing-based side-channel at-

tacks. Though it provides mitigations for specific attacks — e.g., speculative execution

attacks such as Spectre and Meltdown (Section 2.2.3) — it does not rule out the whole

class of attacks. This is problematic when performing remote attestation, because

it means that the confidentiality of cryptographic keys used to sign the attestation

reports is not ensured. Previous work showed how the compromise of similar secrets

lead to the breach of integrity in Intel’s Software Guard Exentsions (SGX) enclaves

that performed the attestation reporting (Section 2.2.3). An adversary can then forge

attestation reports of TAs. To address this, our design relies on the secure co-processor

to manage confidential data such as cryptographic secrets, and to perform sensitive

cryptographic operations. This prevents the compromise of these cryptographic secrets

and thus ensures integrity and confidentiality of the attestation procedure, addressing

requirement S-1.

In our design we distinguish between a rich execution environment (REE) or non-secure

world, and a TEE or secure world. This is derived from the split-world architecture of

Arm TrustZone (Section 2.1.3).
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Figure 4.1. System architecture design with a rich execution environment (REE) and a trusted
execution environment (TEE). The TEE runs a trusted operating system (OS)
consisting of the seL4 microkernel and several management components. The
trusted OS hosts every trusted application (TA) as an isolated component in itself.
The confidentiality of the TEE maybe be compromised by side-channel attacks.
Therefore, security critical data and operations are offloaded to the secure co-
processor in the design.

4.2 Trusted OS design

The trusted OS of the TEE consists of the seL4 microkernel and multiple CAmkES

components. Figure 4.2 shows an overview. There are four components that provide

the TEE functionality: REEAPI, Loader, Attestation, and Driver.

REEAPI provides an application programming interface (API) to the REE for manag-

ing the TEE and TAs. It exposes three methods: 1) loading a TA, 2) attesting a TA,

and 3) calling exposed TA functionality. To coordinate loading and attesting TAs, the

REEAPI shares a remote procedure call (RPC) communication channel with the re-

spective components implementing these functions in the TEE. However, the REEAPI

cannot call functions exposed by a TA directly, because of seL4’s strict isolation. All

RPCs must be explicitly defined at build time. Thus, the REEAPI calls the Loader via

a pre-defined RPC channel, with the function to be called as an argument.

Loader prepares a memory area for TAs to be loaded and initializes them into place.

During run-time, the REEAPI may receive a request to load a specific TA into the TEE.

Internally, it forwards this request to the Loader component. A TA is an executable

and linkable format (ELF) binary file that is the product of a compilation process for
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the TEE platform. The Loader receives a TA ELF file via a shared buffer with the

REEAPI and correctly loads it into the prepared memory area such that its exposed

functionality can be called, addressing requirement S-3. In the special case that a TA

is already statically defined during the build process of the system, the Loader is not

required to perform its normal operation anymore.

Attestation handles the requests for remote attestation of TAs. It first measures the

TA that is to be attested. The measurement consists of computing a secure hash

value over the TA’s memory pages that contain its binary executable. This hash

fingerprint uniquely identifies the state of the TA. However, in order to do this it

must access the TA’s memory, which is isolated from the Attestation component by

default. Thus, we use seL4’s capability system to assign the Attestation component

the respective capabilities to the TA’s memory pages. With read-only access, the

Attestation component can execute its measurement.

Driver communicates with the co-processor on behalf of the TEE. For the remote

attestation design, it receives the fingerprint that the Attestation component computed.

The message to be signed may be extended to incorporate a nonce, timestamp, or

other contextual information, besides only the TA fingerprint. The Driver composes a

signing request message and sends it to the co-processor. We assume communication

happens over a secure channel (Section 3.1), but we leave the specific design of this

for future work. The Driver waits for a reply and subsequently returns the signature to

the calling component.

4.2.1 Dynamic loading

We define dynamic loading as the provisioning and execution of a new TA in the TEE

during run-time. Dynamic loading is a crucial feature in the scenario we are addressing

with our work — i.e., TEEs that user-level code can leverage. When supporting

dynamic loading, attesting the entire TEE image once during boot does not suffice.

This therefore motivates our approach of attesting individual TAs.

The CAmkES framework for the seL4 microkernel requires all system components

to be defined during the build process. The dynamic loading of new components is

not supported, although this might change in the future [40]. Security requirement

S-3 states that the TEE must support dynamic loading of TAs while maintaining the

secure remote attestation functionality (Section 3.3).

We formulate the process for dynamically loading TAs into the TEE during run-time

as follows.

1. Developer statically compiles an application into an ELF binary file.
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Figure 4.2. Overview of the components in the trusted operating system (OS). The trusted
OS is built with the seL4 microkernel, that provides strong isolation between
different components. The REEAPI handles any calls coming into the trusted
execution environment (TEE) from the rich execution environment (REE). The
Loader initializes a trusted application (TA) in memory. The Attestation compo-
nent computes a hash fingerprint of a TA and returns an attestation report. The
Driver communicates with the co-processor and requests the cryptographic signing
operations.

2. REE application uses the application binary interface (ABI) to load the binary

ELF file into the TEE.

3. Loader parses the ELF file.

4. Loader loads the TA sections/segments into the Abstract TA component.

5. Abstract TA stores a symbol table to call the exported functions of the TA.

An Abstract TA is a CAmkES component, similar to any of the other components in

the TEE. It serves as a container for actual TAs that are loaded into the TEE. In this

manner, any dynamically loaded TA is still contained in a properly isolated component

enforced by seL4’s capability-based access control.

The Abstract TA shares a memory buffer with the Loader component to hold a TA

executable. The Attestation component needs access to the same memory buffer to

compute the fingerprint. Due to limitations in CAmkES, a memory buffer cannot

be shared between more than two components. Therefore, we merge the Loader

and Attestation components and share the buffer in the Abstract TA with this new

component. This component will perform the dynamic loading and compute the

fingerprint for attestation.

The concept of the Abstract TA is still constrained by the static system definition

enforced by seL4 CAmkES. This means that an Abstract TA component has to be

statically defined during the build process of the system. The number of frame objects
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it has allocated is fixed, resulting in a maximum supported binary size for TAs. The

choice of this size limit is an implementation decision that is informed by physical

platform constraints and assumptions on the TAs.

As an additional consequence, the number of Abstract TA components in the system

is fixed, as they cannot be created dynamically during run-time. Therefore, creating

one Abstract TA for every TA is infeasible, assuming the TEE has no prior knowledge

of how many TAs will be loaded. An implementation must thus decide on a fixed

number of Abstract TA components to define. When the number of TAs surpasses

the available Abstract TA components, the Loader must replace the contents of one

Abstract TA to load a new TA. Further management of TA state in those cases is left

for future work.

4.3 Secure co-processor

The TEE and the co-processor communicate in a request-response message exchange

pattern. The TEE sends a message to request certain operations from the co-processor,

and the co-processor responds to that request in a new message.

The original equipment manufacturer (OEM) provisions the co-processor with its

cryptographic keys as described in Section 4.4. In our design, we use the Ed25519

public-key signature system [10] on the co-processor. Importantly, Ed25519 is a high-

security signature scheme. Additionally, its signing operations are fast and the size of

the keys and signatures is small. These are valuable properties for employment on a

naturally more resource-constrained co-processor.

4.4 Remote attestation protocol

Figure 4.3 illustrates the attestation flow. On a high level, remote attestation in our

system design works as follows.

0. Loader dynamically loads TA α into memory.

1. REEAPI receives a request for attestation of TA α and forwards it to Attestation.

2. Attestation computes a hash of TA α’s code and data sections in memory.

3. Attestation asks the Driver to request the co-processor to sign the hash value.

The co-processor signs the hash using its attestation key and returns it.

4. The trusted OS creates an attestation report for TAα and sends it to the requesting

party.

The provisioning of cryptographic credentials to the co-processor happens during

manufacturing. The OEM issues device key certificates and publishes these in an
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Figure 4.3. The remote attestation flow in our system design. The trusted application (TA)
α is already loaded. The trusted operating system (OS) receives a request for
attestation in 1) and performs the attestation of trusted application (TA) α in 2).
It then sends the fingerprint to the co-processor to be signed in 3) and returns an
attestation report to the relying party in 4).

OEM database. Later, a relying party can request these to verify that the signing key

used in the signing operations belongs to a legitimate co-processor.

The described remote attestation protocol serves as a minimal proof-of-concept (PoC).

In future work we envision a more robust attestation protocol, including freshness

guarantees, a key hierarchy, and a public key infrastructure (PKI). Our design is

fundamentally about ensuring integrity of the cryptographic keys.
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“It feels like trying to juggle eight-side Rubik’s cubes

while trying to solve them at the same time. And every

time I drop one, God kills a billion kittens.”

Hannu Rajaniemi, The Fractal Prince

5.1 Trusted OS

We developed a proof-of-concept (PoC) of the trusted operating system (OS) using

the seL4 microkernel and the CAmkES application framework in the C programming

language. The trusted OS has several components that together provide the trusted

execution environment (TEE) functionality. Trusted applications (TAs) are executed

as distinct CAmkES components on top of the trusted OS.

The complete source code repository is publicly available 1.

5.1.1 Execution environment and build process

The PoC runs in an emulated 64-bit Arm virtual machine, on an Intel Core i5-10310U

host system running Ubuntu 20.04 LTS. We use QEMU 4.2 2 as our machine emulator.

To allow communication between the trusted OS and the co-processor, we configure

input and output pipes that we pass through QEMU as a serial device to seL4. We

develop a script local to the host machine that forwards data between the configured

pipes, thereby acting as a bridge from the emulated trusted OS to the co-processor that

is connected to the host machine.

The build process of the trusted OS is based on CMake 3. Source dependency man-

agement for seL4 projects is done using Repo 4. To use Repo, a project must have an

XML manifest file to describe its structure and dependencies. We extend the CAmkES

manifest file [72] to point to our project-specific repositories. Furthermore, the seL4

foundation provides build tools for seL4 and CAmkES as a set of Dockerfiles [77].

Running these gives an environment in which to compile the seL4 project and our

CAmkES application.
1https://github.com/ssg-research/sel4-tee
2https://www.qemu.org/
3https://cmake.org/
4https://gerrit.googlesource.com/git-repo/
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Figure 5.1. System overview of the trusted operating system (OS) implementation in seL4
and CAmkES.

|-- CMakeLists.txt /* CMake build automation configuration */

|-- components /* directory for all TEE management CAmkES components */

| |-- Attestation

| |-- Attestation.camkes /* component-specific CAmkES configuration file */

| |-- CMakeLists.txt /* component-specific build configuration */

| |-- src /* source code of the component */

| |-- attestation.c

| ...

|-- interfaces /* directory for all function interface definitions */

| |-- Attest.idl4

| ...

|-- tee.camkes /* CAmkES application configuration */

Listing 5.1. An abbreviated file tree of the proof-of-concept (PoC) trusted execution environ-
ment (TEE) implementation using CAmkES.

5.1.2 TEE management components

The PoC comprises several CAmkES components that implement subsets of the TEE

functionality: REEAPI, Loader, Attestation, Driver, and Runner (Section 4.2). Figure

5.1 shows a system overview of the PoC implementation. The Runner is specific to

the PoC implementation and serves as a way to emulate a rich execution environment

(REE) application that interacts with the TEE. It invokes the REEAPI via remote

procedure calls (RPCs), that use seL4 Endpoint kernel objects internally (Section

2.3.2). A real-world REE application would invoke these functions similarly, but then

via the application binary interface (ABI) (Section 4.2.1).

The project layout is split into several CAmkES configuration files for components,

interfaces, and the application itself. Listing 5.1 shows an overview.
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1 import "../../interfaces/Attest.idl4";

2 import "../../interfaces/Offload.idl4";

3
4 #include <buffer.h>

5
6 component Attestation {

7 provides Attest attest;

8 uses Offload offload;

9 dataport Buf(TA_BUFSIZE) ta;

10 dataport Buf(TA_BUFSIZE) ta2;

11 }

Listing 5.2. Example Attestation component definition in CAmkES. Line 1-2 load the required
interfaces. Line 4 includes definitions for the configured buffer size. Line 7 regis-
ters the interface this component provides. Line 8 registers that this component
uses the Offload interface. Lines 9-10 define shared memory buffers with every
trusted application (TA).

1 import "components/Attestation/Attestation.camkes";

2 import "components/REEAPI/REEAPI.camkes";

3
4 assembly {

5 composition {

6 component Attestation att;

7 component REEAPI api;

8
9 connection seL4RPCCall api_attest_conn(from api.attest, to att.attest);

10 }

11 }

Listing 5.3. Top-level CAmkES configuration to connect the REEAPI and Attestation compo-
nents using a remote procedure call (RPC) connection.

Components and their connections are described in CAmkES configuration files using

the architecture description language (ADL). We define the Attestation component

as shown in Listing 5.2. Listing 5.3 contains top-level configuration to connect two

components using a RPC. The CAmkES build system uses these definitions to generate

glue-code that sets up the described system using seL4 primitives during system boot. In

this example, both the REEAPI and Attestation component will be initialized with their

own thread control block and associated virtual address space (VSpace) and capability

space (CSpace) (Section 2.3). CAmkES then connects them via seL4 Endpoint objects,

that transparently pass the function invocation and return values.

CAmkES calls these RPC communication channels procedures. The functional inter-

face of a procedure is defined in a separate interface description language (IDL) file.

Listing 5.4 shows the Offload procedure we develop as the functional interface for the

Driver component.

1 procedure Offload {

2 int sign(in char fingerprint[], out char signature[]);

3 }

Listing 5.4. The interface definition for the Offload procedure provided by the Driver compo-
nent. It exposes a ‘sign‘ function that takes a fingerprint and outputs a signature.
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Figure 5.2. A state diagram describing the serial response handler in the Driver component.

We write the TEE management component source files in C. We implement every

component in accordance with the function signature from the interface definition.

Function names are prefixed with the component-local name of the interface and an

underscore, e.g. offload_sign.

The Driver component implements the communication protocol with the co-processor

(Section 5.3). It reuses the CAmkES SerialServer global component [75] that abstracts

over the platform’s serial device for communication. The Driver waits for a response

from the co-processor, reading it character-by-character when it is sent, following the

state machine as described in Figure 5.2.

5.1.3 Trusted applications

In our PoC TEE, we define and execute TAs as CAmkES components. This means

that they must be statically defined in the trusted OS (Section 2.3.4). We refer to every

statically loaded TA using a unique identifier, as shown in Listing 5.5. Based on this

identifier, the Loader component invokes the registered entrypoint of a TA via a RPC.

The lifecycle of a TA in this scenario comprises three stages: registering, loading, and

executing.

TA developers must register their applications in the TEE. Registration of TAs in our

PoC involves the following steps.

1. Create the TA component source in the components directory (Listing 5.1).
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1 // include/trusted_apps.c

2 enum tee_registered_ta

3 {

4 ID_TA1 = 1,

5 ID_TA2 = 2,

6 };

Listing 5.5. The C header file specifying unique identifiers for every statically loaded trusted
application (TA).

1 assembly {

2 configuration {

3 att.ta_access = "R";

4 ta.d_access = "R";

5 }

6 }

Listing 5.6. The C header file specifying unique identifiers for every statically loaded trusted
application (TA).

2. Define the component in the composition block in tee.camkes (Listing 5.3).

3. Register a unique identifier for the TA in the include/trusted_apps.h header

file (Listing 5.5).

4. Register lowercase name of the TA component in the TEE mapping scripts

remap_dataports.py and resize_dataports.py (Section 5.1.4).

5. Write the functional interface that the TA provides (Listing 5.4).

6. Register the entrypoint of the TA by invoking it from the Loader.

7. Set up a shared memory buffer between the TA and Attestation components.

a. Declare CAmkES dataports in both components of default type Buf with

size set to {TA NAME}_BUFSIZE (Listing 5.7).

b. Define shared connection between both dataports in the composition block

in tee.camkes (Listing 5.8).

c. Configure access to be read-only (Listing 5.6).

The loading of TAs occurs after the system boots, as part of the user space initialization.

To start a TA, the Runner calls the REEAPI and passes a specific TA identifier. The

REEAPI calls the Loader, which invokes the entry point of the respective TA, thereby

handing over the thread of control to the TA.

5.1.4 Attestation measurement

By default, seL4 strongly isolates all components by virtue of its capability-based

access-control system. However, we require the Attestation component to read the

memory of TAs in order to perform remote attestation. Our PoC uses CAmkES

dataports to share the TA’s memory with the Attestation component. We map the

memory frame objects containing the TA binary executable into the virtual address

space of the Attestation component.
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1 import "../../interfaces/TAInterface.idl4";

2 #include <buffer.h>

3
4 component TA {

5 provides TAInterface app;

6 dataport Buf(TA_BUFSIZE) d;

7 }

Listing 5.7. Trusted application (TA) configuration with dataport definition.

1 assembly {

2 composition {

3 component Attestation att;

4 component TA ta;

5 connection seL4SharedData ta_binary(from ta.d, to attestation.ta);

6 }

7 }

Listing 5.8. Shared data connection between a trusted application (TA) and the Attestation
component.

As a prerequisite for statically loaded TAs, there must be a shared data connection with

the Attestation component. Both the Attestation and the TA declare a unique dataport,

as shown in Listing 5.7. We then connect these two dataports in the top-level CAmkES

configuration (Listing 5.8).

There are two challenges when implementing this that both stem from a circular

dependency. First, we need to know the size of the TA to reserve a sufficiently large

memory area for the Attestation’s dataport. However, the size of the TA is only known

after compilation. Second, we require the memory frame objects that contain the TA

executable to map into the Attestation’s dataport, but those are again only known after

compilation. We write two scripts to solve these problems. They execute in between

multiple rounds of compilation, such that they solve the circular dependency.

Listing 5.9 shows part of the resize_dataports.py script that determines the executable

size of a TA and resizes the dataport in the Attestation component. To determine the size

of the compiled TA, the script counts the number of pages in the capability description

language (capDL) specification that are filled with file data. The objects section of the

capDL specification specifies all frame objects for the TA, but only a subset of those are

initially filled (Section 2.3.4). The default page size on the Arm platform is 4096 bytes.

Thus, the size of the compiled TA is 4096× ta_code_page_count bytes. The script

stores this as a TA-specific C preprocessor macro in the dedicated buffer.h header

file, e.g. #define TA_BUFSIZE 40960. By triggering a new compilation, the Attestation

component now initializes the dataport to the size of the compiled TA.

The next challenge is to provide the Attestation component with the correct capabil-

ities to access the TA’s executable code and data. The idea is to map those frame
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1 for ta_name in ta_names:

2 keyword_frame = f’{ta_name}_group_bin’

3 keyword_code = f’CDL_FrameFill_FileData "{keyword_frame}"’

4
5 ta_code_page_count = len([i for i in findall(keyword_code, spec)])

6
7 print(’:: Found {} executable pages for TA "{}"’.format(ta_code_page_count, ta_name))

8
9 try:

10 tmp = enumerate(lines)

11 index = [i for i, s in tmp if ’{}_BUFSIZE’.format(ta_name.upper()) in s][0]

12 except:

13 lines.append(’’)

14 index = -1

15
16 new_define = ’#define {}_BUFSIZE {}\n’.format(ta_name.upper(), 4096*ta_code_page_count)

17 lines[index] = new_define

18
19 open(args.header, ’w’).writelines(lines)

Listing 5.9. Shortened version of resize_dataports.py that determines the executable size of
every trusted application (TA) and dynamically resizes the respective dataport in
the Attestation component.

objects into the virtual memory area initialized for the shared buffer in the Attesta-

tion component’s VSpace. The CAmkES programming interface does not provide

access to the seL4 primitives that allow to assign capabilities. Instead, our second

script remap_dataports.py (Listing 5.10 shows a shortened version) manipulates an

intermediate capDL representation of the capability distribution in our TEE to achieve

a correct mapping. The scripts first retrieves all indices of the frame objects containing

the TA binary executable by iterating over the system objects that are specified as

shown in Listing 5.11. Then, it finds the indices of the frame objects associated with

the shared data connection. Finally, the script finds the object that assigns the frame

object capabilities into the CSpace of the Attestation component. It inserts the indices

corresponding to the TA’s binary executable frame objects into the .obj_id field of the

respective capability slots (Listing 5.12). A new round of compilation now sets up the

complete capability distribution such that the Attestation component has direct access

to the TA’s loaded executable from its own virtual memory address space.

Calculating the hash fingerprint is straightforward. The Attestation component includes

TweetNaCl [11] for the cryptographic implementations. It applies the SHA-512 hash-

ing operation to the memory area that contains the TA’s executable. The Attestation

components invokes a RPC at the Driver to offload the signing operation. For observ-

ability purposes of our PoC, we return the resultant signature as a Base64-encoded

string.
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1 for ta_name in ta_names:

2 connection_name = ’{}_binary’.format(ta_name)

3
4 # 1. Find all code frames of the TA

5 # a. First retrieve all frames of the TA, later prune out irrelevant frames

6 nr_ta_frames = spec.count(’.name = "frame_{}_group_bin’.format(ta_name))

7 offset = 0

8 frame_indices = []

9 for _ in range(nr_ta_frames):

10 i = spec.find(’.name = "frame_{}_group_bin’.format(ta_name), offset)

11 frame_indices.append(i)

12 offset = i + 1

13 # b. Loop over frame_indices and save indices of the ones with FileData

14 filedata_frame_indices = []

15 for i in frame_indices:

16 post = spec[i:i+200]

17 if post.find(’CDL_FrameFill_FileData’) != -1:

18 filedata_frame_indices.append(i)

19 # c. Get object IDs of the code frames

20 code_obj_ids = []

21 for i in filedata_frame_indices:

22 pre = spec[i-40:i]

23 obj_id = pre[pre.find(’[’)+1:pre.find(’]’)]

24 code_obj_ids.append(obj_id)

25
26 # 2. Find dataport Frame Objects

27 count_dataport_frames = spec.count(’.name = "{}_data’.format(connection_name))

28 dataport_obj_ids = []

29 for i in range(count_dataport_frames):

30 offset = spec.find(’.name = "{}_data_{}_obj’.format(connection_name, i))

31 pre = spec[offset-40:offset]

32 obj_id = pre[pre.find(’[’)+1:pre.find(’]’)]

33 dataport_obj_ids.append(obj_id)

34
35 # 3. Find cap for dataport in the Attestation component

36 # a. First find index of start of Attestation capability group

37 index_attest_caps = spec.find(’.name = "pt_attestation_group_bin’)

38 # b. Find Attestation’s FrameCaps for dataports

39 tmp = findall(’/* {}_data’.format(connection_name), spec[index_attest_caps:])

40 framecaps = [index_attest_caps + i for i in tmp]

41 # Select only those that are part of Attestation capabilities

42 framecaps = framecaps[0:count_dataport_frames]

43
44 # 4. Insert obj_id for code frame into dataport caps

45 for i in range(len(dataport_obj_ids)):

46 area = spec[framecaps[i]-16:framecaps[i]]

47 area = area.replace(dataport_obj_ids[i], code_obj_ids[i])

48 spec = spec[:framecaps[i]-16] + area + spec[framecaps[i]:]

Listing 5.10. Shortened version of remap_dataports.py that finds the specific frame objects
containing a trusted application (TA) executable and map those into the respective
Attestation dataport.
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1 [2036] = {

2 #ifdef CONFIG_DEBUG_BUILD

3 .name = "frame_ta_group_bin_0002",

4 #endif

5 .type = CDL_Frame,

6 .size_bits = 12,

7 .frame_extra = { .paddr = 0,.fill = { {.type = CDL_FrameFill_FileData,

8 .dest_offset = 0,

9 .dest_len = 4096,

10 .file_data_type = {.filename = "ta_group_bin",

11 .file_offset = 8192

12 }},}

13 },

14 },

Listing 5.11. Capability description language (capDL) C specification for trusted application
(TA) frame objects.

1 [2449] = {

2 #ifdef CONFIG_DEBUG_BUILD

3 .name = "pt_attestation_group_bin_0002",

4 #endif

5 .type = CDL_PT,

6 .slots.num = 429,

7 .slots.slot = (CDL_CapSlot[]) {

8 ...

9 {350, {.type = CDL_FrameCap, .obj_id = 2036 /* ta_binary_data_1_obj */,

10 .is_orig = true, .rights = (CDL_CanRead), .vm_attribs = seL4_ARCH_Default_VMAttributes,

11 .mapping_container_id = INVALID_OBJ_ID, .mapping_slot = 0}},

12 ...

13 }

Listing 5.12. Mapping frame objects into the capability slots of the Attestation component in
the capability description language (capDL) C specification.
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Tag Description Data
RR Request public key -
RP Response public key Ed25519 public key
RM Request signature Bytes
RS Response signature Ed25519 signature

Table 5.1. Message types for communication between the trusted execution environment (TEE)
and co-processor. These messages are encoded in a tag-length-value (TLV) scheme.

5.2 Co-processor

We 5 implement the co-processor using a Digilent Arty A7-100T field-programmable

gate array (FPGA) development board that runs a SiFive Freedom E300 RISC-V pro-

cessor. It exposes two interfaces for communication with a host machine: a serial

connection and a debugging connection. The universal asynchronous receiver/trans-

mitter (UART) interface provides an RS-232 interface for communication over a serial

connection. In our case, this happens over the USB-to-serial interface that is present

on the Arty A7-100T development board. Additionally, it exposes a joint test action

group (JTAG) interface to program and debug the softcore of the development board.

We use this connection to flash the RISC-V softcore.

We provision the co-processor with software that continuously waits for messages on the

serial connection, identified by a special prefixed character: the ASCII data-link escape

(DL; 0x10). Its cryptographic operations are implemented by the TweetNaCl [11]

library. In the PoC, our bridge application on the host provisions the co-processor with

its key pair. In a real-world setting, this is done by an original equipment manufacturer

(OEM) during the manufacturing process. The co-processor uses this key pair to

perform the cryptographic signature operation using TweetNaCl’s implementation of

the Ed25519 scheme.

5.3 Communication protocol

The trusted OS and the co-processor communicate via a single serial communication

channel. We encode messages in a tag-length-value (TLV) scheme, as illustrated in

Figure 5.3. Every message starts with a fixed size tag field that identifies the type of

the message. The next field encodes the length of the message contents. The value

or content of the message is in the last field, which is of dynamic size dependent on

the length of the value. We describe four message types in Table 5.1: a request and

response pair for the public key of the co-processor, and a request and response pair

for the signing operation.

5The implementation of the co-processor was not done by the author of this thesis, but instead
by another researcher in the group.
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Tag Length Value

0 16 32 32+Length

Figure 5.3. The tag-length-value (TLV) encoding scheme for messages between the trusted
execution environment (TEE) and the co-processor. The first sixteen bits contain
the tag that identifies the type of the message. The bits 16-31 encode the length of
the value field containing the data of the message. The data field can thus be of
arbitrary length.

5.4 Dynamic loading of ELF files

Our PoC TEE does not implement the dynamic loading of TAs. This section instead

discusses some considerations for future implementations.

The TA executable and linkable format (ELF) blob must be sent to seL4 via the

ABI, and within seL4 the binary must be passed between components via dataport

connections: from REEAPI, to Loader, into Abstract TA.

To dynamically load a new TA, the Loader must copy the ELF blob into the reserved

memory area of the Abstract TA. However, there are additional considerations to take

into account. In order to address specific functions in the TA, the Loader has to retain

the symbol table or parse it again, provided that it is not stripped. Given a function

name, it must find the entry in the symbol table and associated string table to determine

the offset in the .text section for the respective function.

Additionally, as the Abstract TA component exists before the TA is loaded, there is

little influence over the virtual memory address space. Thus, a TA must be compiled

as position-independent code (PIC).

Dynamic executables require dynamic linking of libraries at run-time. However, to do

this from seL4 user space is more complicated, because we cannot easily map additional

libraries into the VSpace. By default, the ELF files built by seL4 are statically linked

and have no relocations. SeL4’s ELF loader tool copies these blobs into memory

without any additional linking 6 A minimal implementation of dynamic loading would

support only these types of TAs. The loading of an ELF blob might then encompass

the following steps.

• Pre-validations (memory bounds, page alignment, file format)

• Zero out target memory region, because the ELF file may be sparse

• Load each segment of the ELF file

– Skip segments not marked as loadable

– Parse program header table

– memcpy data

6https://github.com/seL4/seL4_tools/blob/master/elfloader-tool/src/common.c
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“Most people are not naturally reflective any more than

they are naturally malicious.”

James Baldwin, Stranger in the Village

We evaluate our trusted execution environment (TEE) against the requirements for-

mulated in Section 3.3. The TEE must provide remote attestation that is secure in

the presence of side-channel attacks that compromise confidentiality of the TEE. It

must also continue to provide isolation and execution integrity for components of

the TEE and trusted applications (TAs). Finally, the performance overhead of the

remote attestation procedure must be affordable relative to the full execution cost of a

TA.

6.1 Security analysis

The TEE must do secure remote attestation and provide guarantees that the attested

TA is also the software that is executed (Section 3.3). This requires integrity and

confidentiality protection of the attestation procedure, and isolation properties for

components in the TEE. We evaluate these two requirements separately.

6.1.1 Secure remote attestation (S-1)

Our TEE aims to protect the integrity and confidentiality of remote attestation via

the introduction of a secure co-processor. For it to fulfill requirement S-1, the TEE

must ensure that the attestation keys and attestation operations are not accessible to an

adversary, either physically, via side-channels, or using other software attacks.

The TEE must be correctly initialized. Our system model assumes that a hardware

root of trust (RoT) verifies the boot process and initialization of the TEE. This ensures

that the TEE is in a trusted state for remote attestation.

As per our system and adversary models, the co-processor is secure from adversaries

(Sections 3.1 and 3.2). Specifically, it is resistant against the side-channel attacks

discussed in Section 2.2, because the co-processor and the main processor do not share

any caches or other hardware units that proved to be exploitable. Additionally, our

model assumes that an adversary cannot physically access the co-processor. Finally, the

co-processor is a fixed-function device in our system. Consequently, it does not allow
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the execution of any arbitrary code, limiting the vulnerability to software attacks.

Furthermore, only the co-processor stores the secret cryptographic keys used for

attestation. These keys are never sent to the TEE. All sensitive cryptographic operations

— i.e., Ed25519 signing operations — that the relying party will verify are also only

performed on the co-processor.

An adversary must not be able to change the hash fingerprint before it is attested.

In our system, the fingerprint never leaves the trusted computing base (TCB) before

it is attested, as illustrated in Figure 6.1. The TCB comprises the components that

have critical control over parts of the attestation procedure, that would allow them to

compromise integrity. The REEAPI is not strictly part of the TCB because it cannot

interfere with the attestation procedure, except for refusing to invoke the Attestation

component. However, it can modify the TA ELF binary as it flows through the system

during dynamic loading. Even though this is strictly separate from the attestation pro-

cedure, we include the REEAPI in the TCB anyway because it is capable of interfering

with the process as a whole.

The Attestation component computes the hash fingerprint by reading the TA’s memory

directly, and sends it to the co-processor via the secure communication channel. The

co-processor computes a signature and returns it to the TEE, which forms an attestation

report that it eventually sends back to the relying party. An adversary thus cannot

violate the fingerprint’s integrity.

As a consequence of these properties, our TEE maintains the remote attestation security.

These security guarantees continue to hold even in the presence of the microarchitec-

tural side-channel attacks we presented.

The focus of our work was not to design any specific attestation protocols. Hence,

the proof-of-concept (PoC) TEE only implements a placeholder protocol. A sound

attestation protocol would additionally require temporal consistency — e.g., a nonce

or another proof of freshness (Section 2.1.1).

6.1.2 Isolation and integrity of the TEE and TAs (S-2)

A TEE guarantees users that their TA executes in a safe environment, where its exe-

cution cannot be tampered with by other TAs or even from outside the TEE. In order

to maintain these guarantees, a TEE must provide strong isolation and integrity pro-

tection. This additionally affects requirement S-1. A user can still not trust a system

that correctly loads their application, if it does so in an unsafe environment. To fully

provide secure remote attestation, our TEE must also ensure that the attested code is

actually the code that executes.
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Figure 6.1. Graphical security analysis of the attestation flow based on the work in [38]. The
Attestation component computes the hash fingerprint by directly accessing the
memory of the trusted application (TA). The fingerprint never leaves the trusted
computing base (TCB) while it is sent to the secure co-processor for signing
(green line). The co-processor is provisioned with its cryptographic keys during
manufacturing. Only the signed fingerprint ever crosses the TCB boundary (gray
line), when it is sent to the relying party. The relying party verifies the signature
using public certificates published by the original equipment manufacturer (OEM).

The seL4 microkernel uses capability-based access-control (Section 2.3.1). Such a

capability-based system is instrumental for strong isolation. A capability must be

granted explicitly to any component before the component can operate on an object.

All components in our TEE are CAmkES components (Section 4.2), including the TAs.

The system creates every CAmkES component by allocating it capabilities to a subset

of the system objects. These are only used for that component. The only exceptions are

objects related to inter-process communication (IPC), and buffers used by the Loader

and Attestation components (Section 5.1.2). The IPC objects are contained in the seL4

proofs, which gives a convincing basis for trusting their integrity. In the static loading

PoC, the Loader does not have any access to TAs. We discuss the case of dynamic

loading later. The Attestation component has capabilities to the Frame objects of

all TAs. However, these capabilities are read-only. In conclusion, the isolation and

integrity of the TEE and TAs are guaranteed, and the defined IPC channels and shared

objects do not compromise these guarantees.
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6.1.3 Secure dynamic loading (S-3)

The dynamic loading of TAs raises additional issues compared to static loading. Firstly,

the TEE must make sure that the TA code is not modified after loading and attestation.

Our TEE is built on top of the formally verified seL4 microkernel that ensures strong

isolation (Section 2.3). Furthermore, our dynamic loading design proposes an Abstract

TA CAmkES component (Section 4.2.1). The Abstract TA component acts as a

container for a dynamically loaded TA, ensuring that it adheres to the same isolation

and integrity guarantees as any other component in the system. This means that a

dynamically loaded TA is not able to interfere with the rest of the trusted operating

system (OS), and neither are other components able to compromise the integrity of

the TA. The exceptions to this are the explicitly defined communication channels with

the merged Loader and Attestation component. In our design, the Loader part of the

merged component needs write-capabilities to the memory area from where the TA

is executed. The Attestation part needs capabilities to the same memory area, but

these are read-only, and they therefore do not influence integrity. Our system model

assumes that both the Loader and Attestation are part of the TCB — as shown in Figure

6.1. Merging these components does therefore not affect security. An adversary can

also not leverage the write-capabilities of the Loader part to violate integrity of a TA.

In conclusion, this ensures that a dynamically loaded TA cannot be modified by an

adversary after attestation.

Secondly, the TEE must ensure that the correct TA is launched. Our PoC does not

implement specific features that address this concern, though it addresses distinct

static TAs using a unique identifier. In the case where there is only one Abstract TA,

execution of the correct TA follows logically after the dynamic loading operation.

When there are more Abstract TA components, the TEE must keep track of the state

of every TA. Future work can extend the design to address these challenges.

6.2 Performance considerations

The remote attestation procedure incurs performance overhead from two sources:

measuring TAs and signing measurement fingerprints.

Chapter 5 described the PoC TEE. The Attestation component in the seL4-based

trusted OS computes the hash fingerprints using the SHA-512 hash function. The

co-processor signs the fingerprints using the Ed25519 signature scheme.

The system model assumes no confidentiality for the environment in which the attesta-

tion measurement is performed (Section 3.1). Therefore, our measurement procedure
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can use any efficient hashing algorithm. Specifically, the measurement fingerprint is a

SHA-512 hash computed by the Attestation component. The SHA-2 family — which

includes SHA-512 — is widely used in applications and protocols, and there exist

many optimized implementations, both in software and in hardware [18]. Furthermore,

the attestation measurement is only performed once during the lifecycle of a TA. The

remote attestation our TEE provides only applies to the static state of a TA after it

is loaded, but before it is executed. During the rest of the TA’s execution, there is

no performance overhead as a consequence of attestation. Additionally, performance

overhead will also be minimal considering that TAs are generally single-purpose

applications and thus smaller in size than regular applications in the rich execution en-

vironment (REE). Combining these arguments, we consider the performance overhead

from the measurement of TAs to be small.

The co-processor signs the measurement fingerprint it receives using the Ed25519

signature scheme. Ed25519 provides very fast signing operations [10] and there is also

recent work on fast and compact hardware implementations of the signature scheme

[87]. Our co-processor implementation (Section 4.3) is however not representative for

performing concrete performance measurements of the attestation operation, because

it is not integrated with the system on chip (SoC) similar to real-world implementations

[5, 86]. However, the fingerprints that the co-processor will sign are of a fixed, small

size. Thus, there is little overhead when computing the signature of the fingerprint for

attestation.

We argued that the two sources of performance overhead for remote attestation in our

TEE are small, thus fulfilling requirement P-1.
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7. Discussion

“But it is one thing to read about dragons and another

to meet them.”

Ursula K. Le Guin, A Wizard of Earthsea

In our proof-of-concept (PoC) trusted execution environment (TEE), we use the

CAmkES application framework for seL4. This makes development of applications

easier, but it also limits what we are able to do. For example, using the CAmkES

framework, every component must be statically defined during development. CAmkES

abstracts over the manual capability manipulation functionality provided by seL4,

making them inaccessible from a component’s perspective. Instead, we could have

developed our TEE without CAmkES. This would give us greater control over the

capability distibution during run-time. Consequently, it allows to copy capabilities to

a shared memory region to multiple components — i.e., a trusted application (TA),

Loader, and Attestation component — without CAmkES’s dataport limit of two. It

would additionally make it easier to dynamically create components, by manually

retyping a set of untyped kernel objects and tweaking the capability access-control

in accordance with the minimum requirements for different executable and linkable

format (ELF) sections — e.g., read-only for .rodata, read-only and executable for

.text. Instead, we chose to develop the TEE with CAmkES for its ease of use and

automated, reliable capability distribution.

We identify multiple directions for future work. First would be the implementation

of dynamic loading of TAs, building upon our design in Section 4.2.1 and the im-

plementation considerations in Section 5.4. This could further show that our remote

attestation security guarantees not only apply to a locked down system, but additionally

extend to TEEs that are more usable. This is important, because ease of use is crucial

for adoption of security.

A second direction is to extend the performance evaluation of our TEE with benchmarks

and measurements. Useful metrics could include the time to attest a certain area of

memory, and benchmark results from the PARSEC suite [12]. This would further

prove our reasoning of the small overhead for remote attestation.
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8. Related work

“I kind of lost track of time...”

“For two hours?”

“There were books involved.”

Brandon Sanderson, The Well of Ascension

The increasing use of trusted execution environments (TEEs) has also lead to an

increase in respective security research. The publication of the Spectre and Meltdown

speculative side-channel attacks instigated many new research directions that seek to

defend against these software-based attacks, and to provide isolated execution and

secure remote attestation. More generally, there is much work on defending against

microarchitectural side-channel attacks.

Mushtaq et al. [60] survey countermeasure techniques for cache-based side-channel

attacks. The countermeasures range from new hardware designs, to software and

application-specific mitigations. They include techniques for partitioning caches [91,

24, 21], time slicing caches [97, 90, 36, 96], and disabling resource sharing [78,

46, 20, 98]. Though these techniques provide mitigations for the attacks caused by

microarchitectural flaws, they still rely on shared hardware. In contrast, our thesis

evades the vulnerability to these types of flaws by separating sensitive operations from

the main processor altogether.

Sanctuary [13] extends Arm TrustZone with user space enclaves to enable execution

of security-critical applications with strong isolation. However, the system operates

on the same processor in secure world, which makes Sanctuary vulnerable to side-

channel attacks on the L2 cache. Varys [65] is a system to protect applications running

in Intel Software Guard Exentsions (SGX) enclaves from side-channel attacks, by

limiting the sharing of resources such as L1 and L2 caches. However, CacheOut [89]

bypasses the Varys software defenses.

Recent work [31, 94] explores the feasibility of resetting the microarchitectural state

— a.o. flushing cache upon security boundary switches — to mitigate side-channel

attacks. The results are inconclusive but promising for wider application.

HYDRA [27] is a remote attestation design built with the seL4 microkernel. It relies

on secure boot functionality to verify that a correct seL4 microkernel image is booted.

HYDRA uses the capability-based access control of seL4 to achieve its security prop-

erties for remote attestation. This is all implemented in software, unlike prior designs
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[23, 51] that relied on hardware implementations. The software executables (analogous

to trusted applications (TAs) in our work) run as separate processes in seL4, but it

remains unclear how they are deployed to the system. HYDRA’s adversarial model

explicitly states that side-channel attacks are out of scope. Additionally, its attestation

procedures and storage of cryptographic secrets all occur inside of seL4. Reasoning

from current knowledge, this makes it vulnerable to transient execution attacks. Our

design addresses these concerns by offloading the sensitive data and operations to a

secure co-processor.

VRASED [63] is another design for remote attestation, that uses both hardware and

software. VRASED focuses on formal verification of the remote attestation scheme.

It achieves this by modeling the sub-modules of the hardware unit as finite state

machines (FSMs) in languages that allow to verify them against models, and by

using a formally-verified cryptography library for the software unit [99]. APEX

[64] extends VRASED by providing provable execution of attested software. The

main difference is that VRASED and APEX do not provide an isolated execution

environment for attested software. By using seL4, our work continues to provide

integrity and isolation of software after it has been attested. Additionally, VRASED

and APEX target resource-constrained devices, whereas our work also extends to more

powerful mobile devices.

The Sancus security architecture [62] for resource-constrained devices provides remote

attestation and isolation guarantees, among other properties. Developers can deploy

software to the platform, similar to our TEE. The Sancus architecture extends the

processor core with hardware units for cryptographic operations and memory access

control. In contrast to Sancus, our work uses a separate co-processor and has formal

verification of the isolation mechanisms by relying on the seL4 microkernel.

Apple’s Secure Enclave [5] and Google’s Titan M [86] are examples of existing secure

co-processors deployed on a large scale. They are isolated from the main processor and

designed to be secure even when the main processor becomes compromised. Apple’s

Secure Enclave has a boot ROM to provide a hardware root of trust (RoT), a dedicated

engine for efficient cryptographic operations, a random number generator, and protected

memory. Google’s Titan M chips comprise similar components, but additionally have

embedded flash memory. The functionalities of these co-processors are consistent

with those formulated in our system model (Section 3.1). An implementation of our

TEE can thus leverage these pre-existing co-processors.

seL4 currently only targets static architectures. However, the seL4 foundation stated

that seL4 will eventually support late loading of components [40]. The dynamic

loading of TAs in the TEE can then be implemented using this functionality.
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9. Conclusion

"What is fate but coincidences in retrospect?"

Ken Liu, The Grace of Kings

In this work we designed and developed a trusted execution environment (TEE) that

provides remote attestation integrity protection even when confidentiality of the TEE

is compromised. Transient execution side-channel attacks compromise confidentiality

of attestation keys in existing TEEs, thereby breaking trust of the remote attestation

procedure. We protected against this by performing the sensitive cryptographic opera-

tions on a secure co-processor, which does not share any vulnerable microarchitectural

hardware units with the main processor. We built the TEE using the formally verified

seL4 microkernel that provides strong isolation and integrity. We can extend our work

to leverage co-processors from Google and Apple, for wide-scale deployment on mo-

bile devices. Our design and prototype show that providing secure remote attestation

for TEEs is possible by using a separate co-processor to guarantee integrity and a

formally verified microkernel for strongly isolated execution.
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